439
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dissimilar laser welding of NiTi to Ti6Al4V via Zr interlayer

ORCID Icon, , ORCID Icon &
Pages 461-470 | Received 02 Mar 2022, Accepted 14 May 2022, Published online: 21 Jun 2022

References

  • Mehrpouya, M.; Gisario, A.; Elahinia, M. Laser Welding of NiTi Shape Memory Alloy: A Review. J. Manuf. Process. 2018, 31, 162–186. DOI: 10.1016/j.jmapro.2017.11.011.
  • Marchand, C.; Heim, F.; Durand, B.; Chafke, N. Nitinol Stent for Percutaneous Heart Valve Implantation: Material Shape Setting. Mater. Manuf. Process. 2011, 26(2), 181–187. DOI: 10.1080/10426914.2010.491695.
  • Shukla, A. K.; Jayachandran, S.; Bhoyar, J. V.; Akash, K.; Mani Prabu, S. S.; Bhirodkar, S. L.; Manikandan, M.; Shiva, S.; Palani, I. A. Micro-Channel Fabrication on NiTi Shape Memory Alloy Substrate Using Nd3+: YAG Laser. Mater. Manuf. Process. 2020, 35(3), 270–278. DOI: 10.1080/10426914.2020.1718703.
  • Zeng, Z.; Oliveira, J. P.; Ao, S.; Zhang, W.; Cui, J.; Yan, S.; Peng, B. Fabrication and Characterization of a Novel Bionic Manipulator Using a Laser Processed NiTi Shape Memory Alloy. Opt. Laser Technol. 2020, 122(September 2019), 105876. DOI: 10.1016/j.optlastec.2019.105876.
  • Şimşir, M.; Akkan, H.; Öksüz, K. E. Processing and Characterization of Porous SiC/NiTi Alloys for Biomedical Applications. Kov. Mater. 2019, 57(5), 363–369. DOI: 10.4149/km_2019_5_363.
  • Predki, W.; Knopik, A.; Bauer, B. Engineering Applications of NiTi Shape Memory Alloys. Mater. Sci. Eng. A. 2008, 481 482(1–2 C), 598–601. DOI: 10.1016/j.msea.2006.12.195.
  • Costanza, G.; Tata, M. E. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Mater. (Basel). 2020, 13(8), 1856. DOI: 10.3390/ma13081856.
  • Ghate, N. D.; Shrivastava, A. Laser Processing of Multiple Surface Characteristics for Ti6al4V Biomedical Implants. Mater. Manuf. Process. 2021, 36(3), 308–315. DOI: 10.1080/10426914.2020.1832686.
  • Gomez-Gallegos, A.; Mandal, P.; Gonzalez, D.; Zuelli, N.; Blackwell, P. Studies on Titanium Alloys for Aerospace Application. Defect Diffus. Forum. 2018, 385 DDF, 419–423. DOI: 10.4028/scientific.net/DDF.385.419.
  • Oliveira, J. P.; Miranda, R. M.; Braz Fernandes, F. M. Welding and Joining of NiTi Shape Memory Alloys: A Review. Prog. Mater. Sci. 2017, 88, 412–466. DOI: 10.1016/j.pmatsci.2017.04.008.
  • Shojaei Zoeram, A.; Akbari Mousavi, S. A. A. Laser Welding of Ti-6al-4V to Nitinol. Mater. Des. 2014, 61, 185–190. DOI: 10.1016/j.matdes.2014.04.078.
  • Miranda, R. M.; Assunção, E.; Silva, R. J. C.; Oliveira, J. P.; Quintino, L. Fiber Laser Welding of NiTi to Ti-6al-4V. Int. J. Adv. Manuf. Technol. 2015, 81(9–12), 1533–1538. DOI: 10.1007/s00170-015-7307-8.
  • Ao, S. S.; Zhang, W.; Li, C. J.; Oliveira, J. P.; Zeng, Z.; Luo, Z. Variable-Parameter NiTi Ultrasonic Spot Welding with Cu Interlayer. Mater. Manuf. Process. 2021, 36(5), 599–607. DOI: 10.1080/10426914.2020.1843676.
  • Datta, S.; Raza, M. S.; Saha, P.; Pratihar, D. K. Effects of Process Parameters on the Quality Aspects of Weld-Bead in Laser Welding of NiTinol Sheets. Mater. Manuf. Process. 2019, 34(6), 648–659. DOI: 10.1080/10426914.2019.1566608.
  • Shiue, R. H.; Wu, S. K. Infrared Brazing Ti50ni50 and Ti-6al-4V Using the Bag-8 Braze Alloy. Mater. Trans. 2005, 46(9), 2057–2066. DOI: 10.2320/matertrans.46.2057.
  • Simões, S.; Viana, F.; Ramos, A. S.; Vieira, M. T.; Vieira, M. F. Reaction Zone Formed During Diffusion Bonding of TiNi to Ti6AL4V Using Ni/ti Nanolayers. 2013, 48(21), 7718–7727. DOI: 10.1007/s10853-013-7592-2.
  • Xie, J.; Chen, Y.; Yin, L.; Zhang, T.; Wang, S.; Wang, L. Microstructure and Mechanical Properties of Ultrasonic Spot Welding TiNi/Ti6AL4V Dissimilar Materials Using Pure Al Coating. J. Manuf. Process. 2021, 64(November 2020), 473–480. DOI: 10.1016/j.jmapro.2021.02.009.
  • Deng, H.; Chen, Y.; Jia, Y.; Pang, Y.; Zhang, T.; Wang, S.; Yin, L. Microstructure and Mechanical Properties of Dissimilar NiTi/Ti6AL4V Joints via Back-Heating Assisted Friction Stir Welding. J. Manuf. Process. 2021, 64(October 2020), 379–391. DOI: 10.1016/j.jmapro.2021.01.024.
  • Quintino, L.; Miranda, R. M. Welding Shape Memory Alloys with NdYag Lasers. Soldag. Inspeção. 2012, 17(3), 210–217. DOI: 10.1590/s0104-92242012000300005.
  • Oliveira, J. P.; Panton, B.; Zeng, Z.; Andrei, C. M.; Zhou, Y.; Miranda, R. M.; Fernandes, F. M. B. Laser Joining of NiTi to Ti6AL4V Using a Niobium Interlayer. Acta Mater. 2016, 105, 9–15. DOI: 10.1016/j.actamat.2015.12.021.
  • Baker, H.; Hiroaki, O. ASM Handbook: Alloy Phase Diagrams; ASM Internationa: Materials Park, Ohio , 1992; Vol. 3, p 501.
  • Cone, E. ASM Handbook - Properties and Selection Irons Steels and High Performance Alloys 1-ASM. 2009. DOI: 10.1520/stp38736s.
  • Shojaei Zoeram, A.; Akbari Mousavi, S. A. A. Effect of Interlayer Thickness on Microstructure and Mechanical Properties of as Welded Ti6AL4V/Cu/NiTi Joints. Mater. Lett. 2014, 133, 5–8. DOI: 10.1016/j.matlet.2014.06.141.
  • Lutterotti, L.; Vasin, R.; Wenk, H. R. Rietveld Texture Analysis from Synchrotron Diffraction Images. I. Calibration and Basic Analysis. Powder Diffr. 2014, 29(1), 76–84. DOI: 10.1017/S0885715613001346.
  • Wenk, H. R.; Lutterotti, L.; Kaercher, P.; Kanitpanyacharoen, W.; Miyagi, L.; Vasin, R. Rietveld Texture Analysis from Synchrotron Diffraction Images. II. Complex Multiphase Materials and Diamond Anvil Cell Experiments. Powder Diffr. 2014, 29(3), 220–232. DOI: 10.1017/S0885715614000360.
  • Sindo Kou, S. Welding Metallurgy, 2nd ed.; John Wiley & Sons, Inc: New Jersey, USA, 2003; pp 431.446.
  • Hong, S. H.; Kim, J. T.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Na, Y. S.; Lim, K. R.; Shim, C. H.; Park, J. M.; Kim, K. B. Influence of Zr Content on Phase Formation, Transition and Mechanical Behavior of Ni-Ti-Hf-Zr High Temperature Shape Memory Alloys. J. Alloys Compd. 2017, 692, 77–85. DOI: 10.1016/j.jallcom.2016.09.023.
  • Li, J.; Yi, X.; Sun, K.; Sun, B.; Gao, W.; Wang, H.; Meng, X.; Song, W. The Effect of Zr on the Transformation Behaviors, Microstructure and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys. J. Alloys Compd. 2018, 747, 348–353. DOI: 10.1016/j.jallcom.2018.03.053.
  • Yeh, M. C.; Li, J. L.; Lo, P. J.; Hsieh, K. C. Phase Equilibrium in the Ni-Ti-Zr System at 800 °C. J. Phase Equilibria Diffus. 2014, 35(2), 157–162. DOI: 10.1007/s11669-013-0271-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.