530
Views
1
CrossRef citations to date
0
Altmetric
Review

Surface alteration of Cobalt-Chromium and duplex stainless steel alloys for biomedical applications: a concise review

, & ORCID Icon
Pages 260-270 | Received 31 Mar 2022, Accepted 10 Jul 2022, Published online: 26 Jul 2022

References

  • Tsakiris, V.; Tardei, C.; Clicinschi, F. M. Biodegradable Mg Alloys for Orthopedic Implants – A Review. J. Magnes. Alloy. 2021, 9(6), 1884–1905. DOI:10.1016/J.JMA.2021.06.024.
  • Mahajan, A.; Singh, G.; Devgan, S.; Sidhu, S. S. EDM Performance Characteristics and Electrochemical Corrosion Analysis of Co-Cr Alloy and Duplex Stainless Steel: A Comparative Study. 2020, 235, 812–823. DOI:10.1177/0954408920976739
  • Beake, B. D.; Liskiewicz, T. W. Comparison of Nano-F`retting and Nano-Scratch Tests on Biomedical Materials, Tribol. Int. 2013, 63, 123–131. DOI: 10.1016/J.TRIBOINT.2012.08.007.
  • Niinomi, M. Recent Metallic Materials for Biomedical Applications. Metall. Mater. Trans. A. 2002, 333(33), 477–486. DOI:10.1007/S11661-002-0109-2.
  • Kedia, S.; Bonagani, S. K.; Majumdar, A. G.; Kain, V.; Subramanian, M.; Maiti, N.; Nilaya, J. P. Nanosecond Laser Surface Texturing of Type 316L Stainless Steel for Contact Guidance of Bone Cells and Superior Corrosion Resistance. Colloid Interface Sci. Commun. 2021, 42, 100419. DOI: 10.1016/J.COLCOM.2021.100419.
  • Gregorutti, R. W.; Grau, J. E.; Sives, F.; Elsner, C. I. Mechanical, Electrochemical and Magnetic Behaviour of Duplex Stainless Steel for Biomedical Applications. Mater. Sci. Technol. 2015, 31, 1818–1824. DOI:10.1179/1743284715Y.0000000017
  • Liu, Y.; Rath, B.; Tingart, M.; Eschweiler, J. Role of Implants Surface Modification in Osseointegration: A Systematic Review. J. Biomed. Mater. Res. Part A. 2020, 108(3), 470–484. DOI:10.1002/JBM.A.36829.
  • Al-Amin, M.; Abdul Rani, A. M.; Abdu Aliyu, A. A.; Abdul Razak, M. A.; Hastuty, S.; Bryant, M. G. Powder Mixed-EDM for Potential Biomedical Applications: A Critical Review. 2020, 1789–1811. DOI:10.1080/10426914.2020.1779939.
  • Kumar, S.; Singh, R.; Singh, T. P.; Sethi, B. L. Surface Modification by Electrical Discharge Machining: A Review. J. Mater. Process. Technol. 2009, 209(8), 3675–3687. DOI:10.1016/J.JMATPROTEC.2008.09.032.
  • Zhang, L.; Song, B.; Yang, L.; Shi, Y. Tailored Mechanical Response and Mass Transport Characteristic of Selective Laser Melted Porous Metallic Biomaterials for Bone Scaffolds. Acta. Biomater. 2020, 112, 298–315. DOI:10.1016/J.ACTBIO.2020.05.038.
  • Sadiq, K.; Sim, M. A.; Black, R. A.; Stack, M. M. Mapping the Micro-Abrasion Mechanisms of CoCrmo: Some Thoughts on Varying Ceramic Counterface Diameter on Transition Boundaries in vitro. Lubricants. 2020, 8(7), 71. DOI:10.3390/LUBRICANTS8070071.
  • Dowson, D. New Joints for the Millennium: Wear Control in Total Replacement Hip Joints, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001, 215(4), 335–358. DOI: 10.1243/0954411011535939.
  • Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and Its Prevention-A Review Fabrication of Silica Based Biomaterials from Nature Waste-Towards Low Cost Bio Products. View Project Surface Modifications of Aerospace Materials View Project Biomedical Implants: Corrosion and Its Prevention-A Review. Recent Patents Corros. Sci. 2010, 2, 40–54. DOI:10.2174/1877610801002010040.
  • Narushima, T.; Ueda, K. Alfirano, Co-Cr Alloys as Effective Metallic Biomaterials. 2015, 157–178. DOI:10.1007/978-3-662-46836-4_7.
  • Posada, O. M.; Tate, R. J.; Grant, M. H. Effects of CoCr Metal Wear Debris Generated from Metal-On-Metal Hip Implants and Co Ions on Human Monocyte-Like U937 Cells. Toxicol. InVitro. 2015, 29(2), 271–280. DOI:10.1016/J.TIV.2014.11.006.
  • CN108220691A -It is a Kind of for Cobalt-Base Alloys of Artificial Tooth and Preparation Method Thereof - Google Patents. https://patents.google.com/patent/CN108220691A/en?q=based+alloys+biomedical&oq=co+based+alloys+biomedical&page=4 (accessed June 14, 2022).
  • JP5616845B2 - Method for Producing Co-Based Alloy for Living Body - Google Patents. https://patents.google.com/patent/JP5616845B2/en?q=based+alloys+biomedical&oq=co+based+alloys+biomedical (accessed June 14, 2022).
  • US20130073028A1 - Co-BASED ALLOYS for BIOMEDICAL APPLICATIONS and STENT - Google Patents. https://patents.google.com/patent/US20130073028A1/en?q=based+alloys+biomedical&oq=co+based+alloys+biomedical (accessed June 14, 2022).
  • Okazaki, Y.; Gotoh, E. Comparison of Metal Release from Various Metallic Biomaterials in vitro. Biomaterials. 2005, 26(1), 11–21. DOI:https://doi.org/10.1016/J.BIOMATERIALS.2004.02.005.
  • Souza, J. C. M.; Mota, R. R. C.; Sordi, M. B.; Passoni, B. B.; Benfatti, C. A. M.; Magini, R. S. Biofilm Formation on Different Materials Used in Oral Rehabilitation, Braz. Dent. J. 2016, 27, 141–147. DOI:10.1590/0103-6440201600625.
  • Metikoš-Huković, M.; Pilić, Z.; Babić, R.; Omanović, D. Influence of Alloying Elements on the Corrosion Stability of CoCrMo Implant Alloy in Hank’s Solution, Acta Biomater. 2006, 2, 693–700. DOI:10.1016/J.ACTBIO.2006.06.002
  • Resen, A. M. Surface Modification of Co-Cr-Mo Alloy by Plasma Assisted CVD, Mater. Today Proc. 2021, 42, 2896–2900. DOI:10.1016/J.MATPR.2020.12.744.
  • Dimitriadis, K.; Lekatou, A. G.; Sfikas, A. K.; Roumpi, M.; Tsouli, S.; Galiatsatos, A.; Agathopoulos, S. Influence of Heat-Treatment Cycles on the Microstructure, Mechanical Properties, and Corrosion Resistance of Co-Cr Dental Alloys Fabricated by Selective Laser Melting. J. Mater. Eng. Perform. 2021, 30(7), 5252–5265. DOI:10.1007/S11665-021-05738-9.
  • Tuna, S. H.; Özçiçek Pekmez, N.; Kürkçüoʇlu, I. Corrosion Resistance Assessment of Co-Cr Alloy Frameworks Fabricated by CAD/CAM Milling, Laser Sintering, and Casting Methods. J. Prosthet. Dent. 2015, 114(5), 725–734. DOI:10.1016/J.PROSDENT.2015.02.031.
  • Valkov, S.; Parshorov, S.; Andreeva, A.; Rabadzhiyska, S.; Nikolova, M.; Bezdushnyi, R.; Petrov, P. Influence of Beam Power on the Surface Architecture and Corrosion Behavior of Electron-Beam Treated Co-Cr-Mo Alloys. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2021, 494–495. DOI:10.1016/J.NIMB.2021.03.007.
  • Zhou, Z.; Wei, Q.; Li, Q.; Jiang, B.; Chen, Y.; Sun, Y. Development of Co-Based Bulk Metallic Glasses as Potential Biomaterials, Mater. Sci. Eng. C. 2016, 69, 46–51. DOI:10.1016/J.MSEC.2016.05.025.
  • Yang, B.; Shi, C.; Li, Y.; Lei, Q.; Nie, Y. Effect of Cu on the Corrosion Resistance and Electrochemical Response of a Ni–co–cr–mo Alloy in Acidic Chloride Solution. J. Mater. Res. 2018, 33(22), 3801–3808. DOI:10.1557/JMR.2018.271.
  • Qiu, J.; Yu, W. Q.; Ohang, F. Q.; Smales, R. J.; Ohang, Y. L.; Lu, C. H. Corrosion Behaviour and Surface Analysis of a Co–Cr and Two Ni–Cr Dental Alloys Before and After Simulated Porcelain Firing. Eur. J. Oral Sci. 2011, 119(1), 93–101. DOI:10.1111/J.1600-0722.2011.00791.X.
  • Chiba, A.; Kumagai, K.; Nomura, N.; Miyakawa, S. Pin-On-Disk Wear Behavior in a Like-On-Like Configuration in a Biological Environment of High Carbon Cast and Low Carbon Forged Co–29cr–6mo Alloys. Acta Mater. 2007, 55(4), 1309–1318. DOI:10.1016/J.ACTAMAT.2006.10.005.
  • Sahasrabudhe, H.; Bose, S.; Bandyopadhyay, A. Laser Processed Calcium Phosphate Reinforced CoCrmo for Load-Bearing Applications: Processing and Wear Induced Damage Evaluation. Acta. Biomater. 2018, 66, 118–128. DOI:10.1016/J.ACTBIO.2017.11.022.
  • Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive Manufacturing of Biomaterials, Prog. Mater. Sci. 2018, 93, 45–111. DOI:10.1016/J.PMATSCI.2017.08.003.
  • Cetiner, D.; Paksoy, A. H.; Tazegul, O.; Baydogan, M.; Guleryuz, H.; Cimenoglu, H.; Atar, E. A Novel Fabrication Method for a TiO2 Layer Over CoCr Alloy. 2018, 35, 234–241. DOI:10.1080/02670844.2018.1459067
  • Yang, S.; Dillon, O. W.; Puleo, D. A.; Jawahir, I. S. Enhancement of Wear Resistance for Improved Functional Performance of Co-Cr-Mo Hip Implants Through Cryogenic Surface Treatment: A Case Study. 2021, 25, 455–476. DOI:10.1080/10910344.2021.1903924
  • Ren, Z.; Eppell, S.; Collins, S.; Ernst, F. Co–cr–mo Alloys: Improved Wear Resistance Through Low-Temperature Gas-Phase Nitro-Carburization, Surf. Coatings Technol. 2019, 378, 124943. DOI:10.1016/J.SURFCOAT.2019.124943.
  • Qin, L.; Feng, X.; Hafezi, M.; Zhang, Y.; Guo, J.; Dong, G.; Qin, Y. Investigating the Tribological and Biological Performance of Covalently Grafted Chitosan Coatings on Co–cr–mo Alloy, Tribol. Int. 2018, 127, 302–312. DOI:10.1016/J.TRIBOINT.2018.06.018.
  • Han, Y.; Liu, F.; Zhang, K.; Huang, Q.; Guo, X.; Wang, C. A Study on Tribological Properties of Textured Co-Cr-Mo Alloy for Artificial Hip Joints. Int. J. Refract. Met. Hard Mater. 2021, 95, 105463. DOI:10.1016/J.IJRMHM.2020.105463.
  • Liu, R.; Li, X.; Hu, X.; Dong, H. Surface Modification of a Medical Grade Co‐cr‐mo Alloy by Low-Temperature Plasma Surface Alloying with Nitrogen and Carbon, Surf. Coatings Technol. 2013, 232, 906–911. DOI: 10.1016/J.SURFCOAT.2013.06.122.
  • Díaz, C.; Mändl, S.; Pereiro, R.; Fernández, B. Nanomodificated Surface CoCr Alloy for Corrosion Protection of MoM Prosthesis. J. Biomater. Nanobiotechnol. 2015, 06(02), 91–99. DOI:10.4236/JBNB.2015.62009.
  • DE102013103847A1 - Surgical Orthopedic Implants Manufactured from Wear-Resistant Cobalt-Chromium-Molybdenum Alloys - Google Patents. https://patents.google.com/patent/DE102013103847A1/en?q=cobalt+chromium+alloy+biomedical&oq=cobalt+chromium+alloy+biomedical (accessed June 14, 2022).
  • Wang, X.; Liang, Y. Corrosive Wear of the Co–cr–w Alloy in Liquid Zinc. J. Mater. Res. 2001, 16(6), 1585–1592. DOI:10.1557/JMR.2001.0220.
  • Li, W.; Wang, X.; Liu, C.; Qin, G.; Zhang, E. Effect of Heat Treatment on the Bio-Corrosion Properties and Wear Resistance of Antibacterial Co-29cr-6mo-xCu Alloys. J. Mater. Sci. Mater. Med. 2019, 3010(30), 1–10. DOI:10.1007/S10856-019-6313-Z.
  • Iatecola, A.; Longhitano, G. A.; Antunes, L. H. M.; Jardini, A. L.; Miguel, E. D. C.; Béreš, M.; Lambert, C. S.; Andrade, T. N.; Buchaim, R. L.; Buchaim, D. V., et al. Osseointegration Improvement of Co-Cr-Mo Alloy Produced by Additive Manufacturing. Pharm. 2021, 13, 724. DOI: 10.3390/PHARMACEUTICS13050724.
  • Bhure, R.; Mahapatro, A.; Bonner, C.; Abdel-Fattah, T. M. In vitro Stability Study of Organophosphonic Self Assembled Monolayers (SAMs) on Cobalt Chromium (Co–Cr) Alloy, Mater. Sci. Eng. C. 2013, 33(4), 2050–2058. DOI:10.1016/J.MSEC.2013.01.022.
  • Mani, G.; Feldman, M. D.; Oh, S.; Agrawal, C. M. Surface Modification of Cobalt–chromium–tungsten–nickel Alloy Using Octadecyltrichlorosilanes. Appl. Surf. Sci. 2009, 255(11), 5961–5970. DOI:10.1016/J.APSUSC.2009.01.046.
  • Singh, G.; Sidhu, S. S.; Bains, P. S.; Singh, M.; Bhui, A. S. On Surface Modification of Ti Alloy by Electro Discharge Coating Using Hydroxyapatite Powder Mixed Dielectric with Graphite Tool. J. Bio Tribo-Corrosion. 2020, 63(6), 1–11. DOI:10.1007/S40735-020-00389-0.
  • Jain, S.; Parashar, V. Critical Review on the Impact of EDM Process on Biomedical Materials. 2021, 36, 1701–1724. DOI:10.1080/10426914.2021.1942907
  • Ntasi, A.; Mueller, W. D.; Eliades, G.; Zinelis, S. The Effect of Electro Discharge Machining (EDM) on the Corrosion Resistance of Dental Alloys. Dent. Mater. 2010, 26(12), e237–e245. DOI:10.1016/J.DENTAL.2010.08.001.
  • Mahajan, A.; Devgan, S.; Sidhu, S. S. Surface Alteration of Biomedical Alloys by Electrical Discharge Treatment for Enhancing the Electrochemical Corrosion, Tribological and Biological Performances. Surf. Coatings Technol. 2021, 405, 126583. DOI:10.1016/J.SURFCOAT.2020.126583.
  • Mahajan, A.; Sidhu, S. S.; Ablyaz, T. EDM Surface Treatment: An Enhanced Biocompatible Interface. 2019, 33–40. DOI:10.1007/978-981-13-9977-0_3.
  • Alvarez-Armas, I. Duplex Stainless Steels: Brief History and Some Recent Alloys. Recent Patents on Mechanical Engineering. 2008, 1, 51-57.
  • Cui, S.; Pang, S.; Pang, D.; Zhang, Z. Influence of Welding Speeds on the Morphology, Mechanical Properties, and Microstructure of 2205 DSS Welded Joint by K-TIG Welding. Mater. 2021, 14(12), 3426. DOI:10.3390/MA14123426.
  • Francis, R.; Byrne, G. Duplex Stainless Steels—alloys for the 21st Century. Metals. 2021, 11, 836. DOI:10.3390/MET11050836.
  • Sri Maha Vishnu, D.; Sure, J.; Liu, Y.; Vasant Kumar, R.; Schwandt, C. Electrochemical Synthesis of Porous Ti-Nb Alloys for Biomedical Applications, Mater. Sci. Eng. C. 2019, 96, 466–478. DOI:10.1016/J.MSEC.2018.11.025.
  • Kumar, V.; Sehgal, S. Joining of Duplex Stainless Steel Through Selective Microwave Hybrid Heating Technique Without Using Filler Material, Mater. Today Proc. 2020, 28, 1314–1318. DOI:10.1016/J.MATPR.2020.04.509.
  • Ipek, M.; Selvi, I. H.; Findik, F.; Torkul, O.; Cedimoĝlu, I. H. An Expert System Based Material Selection Approach to Manufacturing. Mater. Des. 2013, 47, 331–340. DOI:10.1016/J.MATDES.2012.11.060.
  • Sivakumar, M.; Mudali, U. K.; Rajeswari, S. Compatibility of Ferritic and Duplex Stainless Steels as Implant Materials: In vitro Corrosion Performance. J. Mater. Sci. 1993, 28(22), 6081–6086. DOI:10.1007/BF00365025.
  • Papula, S.; Song, M.; Pateras, A.; Chen, X. B.; Brandt, M.; Easton, M.; Yagodzinskyy, Y.; Virkkunen, I.; Hänninen, H. Selective Laser Melting of Duplex Stainless Steel 2205: Effect of Post-Processing Heat Treatment on Microstructure, Mechanical Properties, and Corrosion Resistance. Materials. 2019, 12(15), 2468. DOI:10.3390/MA12152468.
  • Zhang, F.; Kang, E. T.; Neoh, K. G.; Wang, P.; Tan, K. L. Surface Modification of Stainless Steel by Grafting of Poly(ethylene Glycol) for Reduction in Protein Adsorption. Biomaterials. 2001, 22(12), 1541–1548. DOI:https://doi.org/10.1016/S0142-9612(00)00310-0.
  • Hanawa, T. Reconstruction and Regeneration of Surface Oxide Film on Metallic Materials in Biological Environments. Corros. Rev. 2003, 21, 161–182. DOI:10.1515/CORRREV.2003.21.2-3.161/MACHINEREADABLECITATION/RIS.
  • Lewis, A. L.; Tolhurst, L. A.; Stratford, P. W. Analysis of a Phosphorylcholine-Based Polymer Coating on a Coronary Stent Pre- and Post-Implantation. Biomaterials. 2002, 23(7), 1697–1706. DOI:https://doi.org/10.1016/S0142-9612(01)00297-6.
  • Liu, Y.; Zhang, Y.; Wang, Y. L.; Tian, Y. Q.; Chen, L. S. Research Progress on Surface Protective Coatings of Biomedical Degradable Magnesium Alloys. J. Alloys Compd. 2021, 885, 161001. DOI:10.1016/J.JALLCOM.2021.161001.
  • Disegi, J. A.; Eschbach, L. Stainless Steel in Bone Surgery. Injury. 2000, 31, D2–D6. DOI:10.1016/S0020-1383(00)80015-7.
  • Sathiyanarayanan, S.; Marikkannu, C.; Srinivasan, P. B.; Muthupandi, V. Corrosion Behaviour of Ti6al4v and Duplex Stainless Steel (UNS31803) in Synthetic Bio-Fluids. Anti-Corrosion Methods Mater. 2002, 49(1), 33–37. DOI:10.1108/0003559021043584/FULL/XML.
  • Al-Murshdy, J. M. S.; Hammood, A. S. Fahad, Improvement Corrosion Behaviour of Lean Duplex Stainless Steel 2101 Alloy in Ringer Solution by Plasma Nitriding for Biomedical Applications. J. Phys.: Conf. Ser. 2021, 1973(1), 012070. DOI:10.1088/1742-6596/1973/1/012070.
  • Lopes, R. F.; da Costa, J. A. P.; Silva, W.; Viana, B. C.; Marciano, F. R.; Lobo, A. O.; Sousa, R. R. M. TiO2 Anti-Corrosive Thin Films on Duplex Stainless Steel Grown Using Cathodic Cage Plasma Deposition, Surf. Coatings Technol. 2018, 347, 136–141. DOI:10.1016/J.SURFCOAT.2018.04.074.
  • Hammood, A. S. Biomineralization of 2304 Duplex Stainless Steel with Surface Modification by Electrophoretic Deposition. J. Appl. Biomater. Funct. Mater. 2020, 18. DOI:10.1177/2280800019896215.
  • Abdulsada, F. W.; Hammood, A. S. Characterization of Corrosion and Antibacterial Resistance of Hydroxyapatite/silver Nano Particles Powder on 2507 Duplex Stainless Steel, Mater. Today Proc. 2021, 42, 2301–2307. DOI:10.1016/J.MATPR.2020.12.319.
  • Beloti, M. M.; Rollo, J. M. D. A.; Itman Filho, A.; Rosa, A. L. In vitro Biocompatibility of Duplex Stainless Steel with and Without 0.2% Niobium. J. Appl. Biomater. Biomech. 2018, 2, 162–168. DOI:10.1177/228080000400200306.
  • Edathazhe, A. B.; Shashikala, H. D. Corrosion Resistance and in-Vitro Bioactivity of BaO Containing Na 2 O-CaO-P 2 O 5 Phosphate Glass-Ceramic Coating Prepared on 316 L, Duplex Stainless Steel 2205 and Ti6al4v. Mater. Res. Express. 2018, 5(3), 035404. DOI:10.1088/2053-1591/AAB2F5.
  • Köse, C.; Kaçar, R.; Zorba, A. P.; Bağirova, M.; Abamor, E. Ş.; Allahverdiyev, A. M. Interactions Between Fibroblast Cells and Laser Beam Welded AISI 2205 Duplex Stainless Steel. Mater. Sci. 2018, 24, 159–165. DOI:10.5755/J01.MS.24.2.18006.
  • Marques, F.; Da Silva, W. M.; Pardal, J. M.; Tavares, S. S. M.; Scandian, C. Influence of Heat Treatments on the Micro-Abrasion Wear Resistance of a Superduplex Stainless Steel. Wear. 2011, 271, 1288–1294. DOI:10.1016/J.WEAR.2010.12.087.
  • Lim, H.; Kim, P.; Jeong, H.; Jeong, S. Enhancement of Abrasion and Corrosion Resistance of Duplex Stainless Steel by Laser Shock Peening. J. Mater. Process. Technol. 2012, 212(6), 1347–1354. DOI:10.1016/J.JMATPROTEC.2012.01.023.
  • Neto, J. O. P.; Da Silva, R. O.; Da Silva, E. H.; Moreto, J. A.; Bandeira, R. M.; Manfrinato, M. D.; Rossino, L. S. Wear and Corrosion Study of Plasma Nitriding F53 Super Duplex Stainless Steel. Mater. Res. 2016, 19, 1241–1252. DOI: 10.1590/1980-5373-MR-2015-0656.
  • Soyama, J.; Lopes, T. P.; Zepon, G.; Kiminami, C. S.; Botta, W. J.; Bolfarini, C. Wear Resistant Duplex Stainless Steels Produced by Spray Forming. Met. Mater. Int. 2018, 252(25), 456–464. DOI:10.1007/S12540-018-0202-8.
  • Lailatul, P. H.; Maleque, M. A. Surface Modification of Duplex Stainless Steel with SiC Preplacement Using TIG Torch Cladding. Procedia. Eng. 2017, 184, 737–742. DOI:10.1016/J.PROENG.2017.04.151.
  • Zhao, S.; Wang, L.; Xu, J.; Shan, Y. Surface Modification of SS2205 Duplex Stainless Steel by Plasma Nitriding at Anodic Potential. Adv. Mater. Res. 2014, 881–883–12671263–1267. DOI:10.4028/SCIENTIFIC.NET/AMR.881-883.1263.
  • Morawska-Chochół, A. Manufacturing of Resorbable Composite Biomaterials Containing Protein. Mater. Manuf. Process. 2021, 37, 782–791. DOI:10.1080/10426914.2021.2001508
  • Singh, G.; Bhui, A. S.; Lamichhane, Y.; Mukhiya, P.; Kumar, P.; Thapa, B. Machining Performance and Influence of Process Parameters on Stainless Steel 316L Using Die-Sinker EDM with Cu Tool, Mater. Today Proc. 2019, 18, 2468–2476. DOI:10.1016/J.MATPR.2019.07.096.
  • Mahajan, A.; Sidhu, S. S.; Devgan, S. Examination of Hemocompatibility and Corrosion Resistance of Electrical Discharge-Treated Duplex Stainless Steel (DSS-2205) for Biomedical Applications. Appl. Phys. A. 2020, 1269, 126. DOI:10.1007/S00339-020-03940-5.
  • Mahajan, A.; Sidhu, S. S.; Devgan, S. Enhancing Tribological Properties of Duplex Stainless Steel via Electrical Discharge Treatment, Non-Conventional Hybrid Mach. Process. 2020, 135–141. DOI:10.1201/9780429029165-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.