186
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pure Ti fabricated by cold isostatic pressing and sintering TiH2 powder

, , &
Pages 170-179 | Received 06 Apr 2022, Accepted 16 Jun 2022, Published online: 31 Jul 2022

References

  • Mouritz, A. P. Introduction to Aerospace Materials; Woodhead Publishing: Sawston, UK, 2012.
  • Tanaka, S.; Akahori, T.; Niinomi, M.; Nakai, M. Relationship Between Microstructure and Fatigue Properties of Forged Ti–5al–2sn–2zr–4mo–4cr for Aircraft Applications. Mater. Trans. 2020, 61(10), 2017–2024. DOI: 10.2320/matertrans.MT-M2020184.
  • Zheng, Q. C.; Mao, L. L.; Shi, Y. T.; Fu, W. H.; Hu, Y. H. Biocompatibility of Ti-6al-4V Titanium Alloy Implants with Laser Microgrooved Surfaces. Mater. Technol. 2020, 1–10. DOI:10.1080/10667857.2020.1816011.
  • Wang, B. C.; Lei, P.; Ma, G. Y.; Li, D. D.; Savvakin, D. G.; Ivasishin, O. M. Microstructure and Properties of Ti80 Alloy Fabricated by Hydrogen-Assisted Blended Elemental Powder Metallurgy. Front. Mater. 2020, 7, 291. DOI: 10.3389/fmats.2020.00291.
  • Li, H. M.; Lei, T.; Zhao, J. C.; Shang, Q. L.; Lin, Z. Production of Ti–13nb–13zr Alloy by Powder Metallurgy (P/M) via Sintering Hydrides. Mater. Manuf. Process. 2016, 31(6), 719–724. DOI: 10.1080/10426914.2014.994775.
  • Zhang, Y. N.; Wang, C. M.; Guo, X.; Chen, Y. G. Sintering Densification Behaviors of Ti-1al-8V-5fe Alloy Based on TiH2 and TiH1.5 Powders. Mater. Manuf. Process. 2019, 34(8), 921–926. DOI: 10.1080/10426914.2019.1594274.
  • Ivasishin, O. M.; Savvakin, D. G.; Moxson, V. S.; Bondareval, K. A.; Froes, F. H. Titanium Powder Metallurgy for Automotive Components. Mater. Technol. 2002, 17(1), 20–25. DOI: 10.1080/10667857.2002.11752959.
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Powder Metallurgy CP-Ti Performances: Hydride–dehydride Vs. Sponge. Mater. Des. 2014, 60(8), 226–232. DOI: 10.1016/j.matdes.2014.04.005.
  • Robertson, I. M.; Schaffer, G. B. Comparison of Sintering of Titanium and Titanium Hydride Powders. Powder. Metall. 2013, 53(1), 12–19. DOI: 10.1179/003258909X12450768327063.
  • Ivasishin, O. M.; Savvakin, D. G.; Gumenyak, M. M.; Bondarchuk, O. B. Role of Surface Contamination in Titanium PM. Key Eng. Mater. 2012, 520, 121–132. DOI: 10.4028/scientific.net/KEM.520.121.
  • Savvakin, D. H.; Humenyak, M. M.; Matviichuk, M. V.; Molyar, O. H. Role of Hydrogen in the Process of Sintering of Titanium Powders. Mater. Sci. 2012, 47(5), 651–661. DOI: 10.1007/s11003-012-9440-y.
  • Petroni, S. L. G. PM Compaction Equations Applied for the Modelling of Titanium Hydride Powders Compressibility Data. Powder. Metall. 2020, 63(1), 35–42. DOI: 10.1080/00325899.2019.1710339.
  • Wang, C. M.; Zhang, Y. N.; Xiao, S. F.; Chen, Y. G. Sintering Densification of Titanium Hydride Powders. Mater. Manuf. Process. 2017, 32(5), 517–522. DOI: 10.1080/10426914.2016.1244833.
  • Dong, S. C.; Wang, B. C.; Song, Y. C.; Ma, G. Y.; Xu, H. Y.; Savvakin, D. G.; Ivasishin, O. M.; Bernard, G. G. Comparative Study on Cold Compaction Behavior of TiH2 Powder and HDH-Ti Powder. Adv. Mater. Sci. Eng. 2021. DOI: 10.1155/2021/9999541.
  • Chen, P.; Kim, G. Y.; Ni, J. Investigations in the Compaction and Sintering of Large Ceramic Parts. J. Mater. Process. Tech. 2007, 190(1–3), 243–250. DOI: 10.1016/j.jmatprotec.2007.02.039.
  • Shui, A.; Makiya, A.; Tanaka, S.; Uchida, N.; Uematsu, K. Effect of Cold Isostatic Pressing on Microstructure and Shrinkage Anisotropy During Sintering of Uniaxially Pressed Alumina Compacts. J. Ceram. Soc. Jpn. 2010(1280), 110–269264–269.DOI:10.2109/jcersj.110.264.
  • Chaika, E. V. Isostatic Pressing of Ceramic Articles in Thermoplastic Molds. Glass. Ceram. 2016, 73(3–4), 91–93. DOI: 10.1007/s10717-016-9832-9.
  • Attia, U. M. Cold-Isostatic Pressing of Metal Powders: A Review of the Technology and Recent Developments. Crit. Rev. Solid State. 2021, 46(6), 587–610. DOI: 10.1080/10408436.2021.1886043.
  • Singh, A. P.; Gabbitas, B.; Brown, I. W. M.; Mukhtar, A. Processing, Microstructure, Properties and Fracture Behaviour of Ti–6al–4v Manufactured from Pre-Alloyed Powder. Mater. Sci. Tech-Lond. 2020, 37(1), 23–31. DOI: 10.1080/02670836.2020.1858601.
  • El-Soudani, S. M.; Ko, Y.; Crist, E. M.; Sun, F. S.; Campbell, M. B.; Esposito, T. S. Optimization of Blended-Elemental Powder-Based Titanium Alloy Extrusions for Aerospace Applications. Metall. Mater. Trans. A. 2013, 44(2), 899–910. DOI: 10.1007/s11661-012-1437-5.
  • Duz, V.; Matviychuk, M.; Klevtsov, A.; Moxson, V. Industrial Application of Titanium Hydride Powder. Met. Powder. Rep. 2017, 72(1), 30–38. DOI: 10.1016/j.mprp.2016.02.051.
  • Wang, C. M.; Zhang, Y. G.; Wei, Y. H.; Mei, L. B.; Xiao, S. F.; Chen, Y. G. XPS Study of the Deoxidization Behavior of Hydrogen in TiH2 Powders. Powder Technol. 2016, 302, 423–425. DOI: 10.1016/j.powtec.2016.09.005.
  • Li, D. Y.; He, H.; Lou, J.; Li, Y. M.; He, Z. Y.; Chen, Y. Z.; Luo, F. H. Effect of Oxygen Contents on Predominant Sintering Mechanism During Initial Stage of Pure Titanium Powder. Powder Technol. 2020, 361, 617–623. DOI: 10.1016/j.powtec.2019.11.070.
  • Prashanth, K. G. Influence of Mechanical Activation on Decomposition of Titanium Hydride. Mater. Manuf. Process. 2010, 25(9), 974–977. DOI: 10.1080/10426911003720870.
  • Lefebvre, L. P.; Baril, E.; Camaret, L. D. The Effect of Oxygen, Nitrogen and Carbon on the Microstructure and Compression Properties of Titanium Foams. J. Mater. Res. 2013, 28(17), 2453–2460. DOI: 10.1557/jmr.2013.114.
  • Paulin, I.; Donik, C.; Mandrino, D.; Voncina, M.; Jenko, M. Surface Characterization of Titanium Hydride Powder. Vacuum. 2012, 86(6), 608–613. DOI: 10.1016/j.vacuum.2011.07.054.
  • Ivasishin, O. M.; Eylon, D.; Bondarchuk, V. I.; Savvakin, D. G. Diffusion During Powder Metallurgy Synthesis of Titanium Alloys. Defect Diffus. Forum. 2008, 277, 177–185. DOI: 10.4028/scientific.net/DDF.277.177.
  • Zhang, Y. A.; Wang, C. M.; Zhang, Y. G.; Wei, Y. H.; Xiao, S. F.; Chen, Y. G. TiH2-based Ti-1al-8V-5fe PM Alloys with Different Addition Methods of Alloying Elements. Mater. Manuf. Process. 2018, 33(8), 849–855. DOI: 10.1080/10426914.2017.1376079.
  • Petroni, S. L. G.; Paula, M. S. M.; Henriques, V. A. R. Interstitial Elements in Ti–13nb–13zr Alloy Produced by Powder Metallurgy Using Hydride Powders. Powder. Metall. 2013, 56(3), 202–207. DOI: 10.1179/1743290112Y.0000000046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.