159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of protective materials on the sintering properties of Zn4Sb3

, , & ORCID Icon
Pages 180-187 | Received 11 Apr 2022, Accepted 12 Jul 2022, Published online: 26 Jul 2022

References

  • Beauvoir, T. H. D.; Sangregorio, A.; Bertrand, A.; Payen, C.; Michau, D.; Chung, U. C.; Josse, M. Cool-SPS Stabilization and Sintering of Thermally Fragile, Potentially Magnetoelectric, NH4FeP2O7. Ceram. Int. 2019, 45(7), 9674–9678. DOI:10.1016/j.ceramint.2018.12.103.
  • Alem, S. A. A.; Latifi, R.; Angizi, S.; Hassanaghaei, F.; Aghaahmadi, M.; Ghasali, E.; Rajabi, M. Microwave Sintering of Ceramic Reinforced Metal Matrix Composites and Their Properties: A Review. Mater. Manuf. Processes. 2020, 35(3), 303–327. DOI:10.1080/10426914.2020.1718698.
  • Muñoz, S.; Anselmi-Tamburini, U. Parametric Investigation of Temperature Distribution in Field Activated Sintering Apparatus. Int. J. Adv. Manuf. Technol. 2013, 65(1–4), 127–140. DOI:10.1007/s00170-012-4155-7.
  • Muñoz, S.; Anselmi-Tamburini, U. Temperature and Stress Fields Evolution During Spark Plasma Sintering Processes. J. Mater. Sci. 2010, 45(23), 6528–6539. DOI:10.1007/s10853-010-4742-7.
  • Li, X. Structure and Properties of Copper Matrix Composites Reinforced by TiNi and Finite Element Simulation Study. M.D. Dissertation, Harbin Institute of Technology, Heilongjiang, China, 2020.
  • Grigoriev, O. N.; Panasyuk, A. D.; Brodnikovskyy, M. P.; Podchernyaeva, I. O.; Melakh, L. M.; Yurechko, D. V.; Vedel, D. V.; Kozak, I. V. Mechanical and Corrosion Properties of ZrB2–SiC Composite Ceramics with Oxide Additions. Powder Metall. Met. Ceram. 2022, 60(9–10), 130–134. DOI:10.1007/s11106-022-00275-z.
  • Zhang, Z.; Chen, C. T.; Suetake, A.; Hsieh, M. C.; Iwaki, A.; Suganuma, K. Pressureless and Low-Temperature Sinter-Joining on Bare Si, SiC and GaN by a Ag Flake Paste. Scr. Mater. 2021, 198, 113833. DOI:10.1016/j.scriptamat.2021.113833.
  • Pereira, D.; Biasibetti, G. R. S.; Camerini, R. V.; Pereira, A. S. Sintering of Mullite by Different Methods. Mater. Manuf. Processes. 2014, 29(4), 391–396. DOI:10.1080/10426914.2013.864400.
  • Lin, J. P.; Qiao, G. J.; Jin, H. Y.; Guo, Y. J.; Lu, T. J. Ti/Al2O3 and Ni/Al2O3 Laminates Prepared by Plasma Activated Sintering (PAS). Key Eng. Mater. 2008, 368-372, 1831–1834. DOI:10.4028/scientific.net/KEM.368-372.1831.
  • Froes, F. H.; Suryanarayana, C.; Eliezer, D. Synthesis. Properties and Applications of Titanium Aluminides. J. Mater. Sci. 1992, 27(19), 5113–5140. DOI:10.1007/BF02403806.
  • Ma, H. Z.; Feng, S. Y., and Chen, Z. X. Study on Microstructure and Mechanical Properties of Cu/Sic Composites Prepared by Spark Plasma Sintering. Sup. Mater. Eng. 2021, 33(4), 13–16. DOI:10.3969/j.issn.1673-1433.2021.04.003.
  • Liu, D. W.; Li, J. F.; Chen, C.; Zhang, B. P. Effects of SiC Nanodispersion on the Thermoelectric Properties of P-Type and N-Type Bi2Te3-Based Alloys. J. Electron. Mater. 2011, 40(5), 992–998. DOI:10.1007/s11664-010-1476-x.
  • Akao, T.; Fujiwara, Y.; Tarui, Y.; Tetsuhiko, O.; Chen, Z. C. Fabrication of Zn4Sb3 Bulk Thermoelectric Materials Reinforced with SiC Whiskers. J. Electron. Mater. 2014, 43(6), 2047–2052. DOI:10.1007/s11664-013-2946-8.
  • Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Luo, C.; Li, J.; Liu, Y. Enhanced Mechanical Properties in Die-Upset Nd-Fe-B Magnets via Die-Upsetting Process. J. Rare Earths. 2012, 30(11), 1112–1115. DOI:10.1016/S1002-0721(12)60189-6.
  • Yang, M. M.; Zhu, H. Y.; Li, H. T.; Fan, H. T.; Hu, Q.; Hu, M. H.; Li, S. S.; Su, T. C. Thermoelectric Properties of PbSe-PbS Solid Solutions Prepared by Mechanical Alloying Method and High Pressure Sintering. Chin. J. High Pressure Phys. 2019, 33(1), 25–29. DOI. DOI:10.11858/gywlxb.20180597.
  • Kumar, N.; Sanguino, P.; Faia, P.; Trindade, B. Porous Si-Sn Alloys Produced by Mechanical Alloying and Subsequent Consolidation by Sintering and Hot-Pressing. Mater. Manuf. Processes. 2022, 37(2), 169–176. DOI:10.1080/10426914.2021.1967979.
  • Chang, S. H.; Chang, H. C.; Huang, K. T. Evaluation of the Strengthening Mechanism and Mechanical Properties of High Alloyed PM23-NbC-TaC Composite Materials Through Vacuum Sintering, Sub-Zero and Heat Treatments. Vacuum. 2021, 187, 110132. DOI:10.1016/j.vacuum.2021.110132.
  • Březina, M.; Hasoňová, M.; Fintová, S.; Doležal, P.; Rednyk, A.; Wasserbauer, J. Mechanical and Structural Properties of Bulk Magnesium Materials Prepared via Spark Plasma Sintering. Mater. Today Commun. 2021, 28, 102569. DOI:10.1016/j.mtcomm.2021.102569.
  • Lim, Y. S.; Cho, J. Y.; Lee, J. K.; Choi, S. M.; Kim, K. H.; Seo, W. S.; Park, H. H. Microstructures and Thermoelectric Properties of Spark Plasma Sintered In4Se3. Electron. Mater. Lett. 2010, 6, 117–121. DOI:10.3365/eml.2010.09.117.
  • Castellero, A.; Fanciulli, C.; Carlini, R.; Fiore, G.; Mele, P.; Passaretti, F.; Baricco, M. Effect of Processing Routes on the Synthesis and Properties of Zn4Sb3 Thermoelectric Alloy. J. Alloys Compd. 2015, 653, 54–60. DOI:10.1016/j.jallcom.2015.08.251.
  • Xie, K.; Hu, Y. H.; Ma, L. Z.; Xia, H. Y.; Lin, J. P.; Qiao, G. J. Preparation and Performance Analysis of More Homogeneous Zn4Sb3. J. Alloys Compd. 2021, 878, 160405. DOI:10.1016/j.jallcom.2021.160405.
  • Ueno, K.; Yamamoto, A.; Noguchi, T.; Inoue, T.; Sodeoka, S.; Obara, H. Optimization of Hot-Press Conditions of Zn4Sb3 for High Thermoelectric Performance III. Effect of Starting Particle Size on Thermoelectric and Mechanical Properties. J. Alloys Compd. 2005, 392(1–2), 295–299. DOI:10.1016/j.jallcom.2004.08.078.
  • Ueno, K.; Yamamoto, A.; Noguchi, T.; Inoue, T.; Sodeoka, S.; Obara, H. Optimization of Hot-Press Conditions of Zn4Sb3 for High Thermoelectric Performance. II. Mechanical Properties. J. Alloys Compd. 2005, 388(1), 118–121. DOI:10.1016/j.jallcom.2004.07.005.
  • Qi, D. K.; Tang, X. F.; Li, H.; Yan, Y. G.; Zhang, Q. J. Improved Thermoelectric Performance and Mechanical Properties of Nanostructured Melt-Spun β-Zn4Sb3. J. Electron. Mater. 2010, 39(8), 1159–1165. DOI:10.1007/s11664-010-1288-z.
  • Wei, S.; Zhang, Z. H.; Shen, X. B.; Wang, F. C.; Sun, M. Y.; Yang, R.; Lee, S. K. Simulation of Temperature and Stress Distributions in Functionally Graded Materials Synthesized by a Spark Plasma Sintering Process. Comput. Mater. Sci. 2012, 60, 168–175. DOI:10.1016/j.commatsci.2012.03.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.