867
Views
10
CrossRef citations to date
0
Altmetric
Research Article

The effects of FFF 3D printing parameters on energy consumption

, ORCID Icon, ORCID Icon, &
Pages 915-932 | Received 22 Jan 2022, Accepted 11 Jun 2022, Published online: 26 Jul 2022

References

  • Milovanovic, S.; Pajnik, J.; Lukic, I. Tailoring of Advanced Poly(lactic Acid)‐based Materials: A Review. J. Appl. Polym. Sci. 2022, 139(12), 51839. DOI: 10.1002/app.51839.
  • Nyika, J.; Mwema, F. M.; Mahamood, R. M.; Akinlabi, E. T.; Jen, T. Advances in 3D Printing Materials Processing-Environmental Impacts and Alleviation Measures. Adv. Mater. Process. Technol. 2021, 1–11. DOI: 10.1080/2374068X.2021.1945311.
  • Parmar, H.; Khan, T.; Tucci, F.; Umer, R.; Carlone, P. Advanced Robotics and Additive Manufacturing of Composites: Towards a New Era in Industry 4.0. Mater. Manuf. Process. 2021, 1–35. DOI: 10.1080/10426914.2020.1866195.
  • Kechagias, J.; Chaidas, D.; Vidakis, N.; Salonitis, K.; Vaxevanidis, N. Key Parameters Controlling Surface Quality and Dimensional Accuracy: A Critical Review of FFF Process. Mater. Manuf. Process. 2022, 37(9), 963–984. DOI: https://doi.org/10.1080/10426914.2022.2032144.
  • Widden, M.; Gunn, K. Design–build–test of Model Aerofoils for Engineering Education Using FDM. Virtual Phys. Prototyp. 2010, 5(4), 189–194. DOI: https://doi.org/10.1080/17452759.2010.528841.
  • Ferrara, M.; Rinaldi, M.; Pigliaru, L.; Cecchini, F.; Nanni, F. Investigating the Use of 3D Printed Soft Magnetic PEEK -Based Composite for Space Compliant Electrical Motors. J. Appl. Polym. Sci. 2022, 139(20), 52150. DOI: https://doi.org/10.1002/app.52150.
  • Gardan, J. Smart Materials in Additive Manufacturing: State of the Art and Trends. Virtual Phys. Prototyp. 2019, 14(1), 1–18. DOI: https://doi.org/10.1080/17452759.2018.1518016.
  • Vassilakos, A.; Giannatsis, J.; Dedoussis, V. Fabrication of Parts with Heterogeneous Structure Using Material Extrusion Additive Manufacturing. Virtual Phys. Prototyp. 2021, 16(3), 267–290. DOI: https://doi.org/10.1080/17452759.2021.1919154.
  • Clarissa, W.-H.-Y.; Chia, C. H.; Zakaria, S.; Evyan, Y.-C.-Y. Recent Advancement in 3-D Printing: Nanocomposites with Added Functionality. Prog. Addit. Manuf. 2021. DOI: 10.1007/s40964-021-00232-z.
  • Petrovskaya, T. S.; Toropkov, N. E.; Mironov, E. G.; Azarmi, F. 3D Printed Biocompatible Polylactide-Hydroxyapatite Based Material for Bone Implants. Mater. Manuf. Process. 2018, 33(16), 1899–1904. DOI: https://doi.org/10.1080/10426914.2018.1476764.
  • Kitsakis, K.; Alabey, P.; Kechagias, J.; Vaxevanidis, N. A Study of the Dimensional Accuracy Obtained by Low Cost 3D Printing for Possible Application in Medicine. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 161, 012025. DOI: https://doi.org/10.1088/1757-899X/161/1/012025.
  • Saengchairat, N.; Tran, T.; Chua, C.-K. A Review: Additive Manufacturing for Active Electronic Components. Virtual Phys. Prototyp. 2016, 12(1), 31–46. DOI: https://doi.org/10.1080/17452759.2016.1253181.
  • Salazar, R.; Pizarro, F.; Vasquez, D.; Rajo-Iglesias, E. Assessment of 3D-Printed Waveguides Using Conductive Filaments and a Chloroform-Based Smoothing Process. Addit. Manuf. 2022, 51, 102593. DOI: 10.1016/j.addma.2022.102593.
  • Vidakis, N.; Maniadi, A.; Petousis, M.; Vamvakaki, M.; Kenanakis, G.; Koudoumas, E. Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–butadiene–styrene Graphene and Carbon Nanocomposites. J. Mater. Eng. Perform. 2020, 29(3), 1909–1918. DOI: https://doi.org/10.1007/s11665-020-04689-x.
  • Vidakis, N.; Petousis, M.; Vairis, A.; Savvakis, K.; Maniadi, A. A Parametric Determination of Bending and Charpy’s Impact Strength of ABS and ABS-Plus Fused Deposition Modeling Specimens. Prog. Addit. Manuf. 2019, 4(3), 323–330. DOI: https://doi.org/10.1007/s40964-019-00092-8.
  • Gebler, M.; Schoot Uiterkamp, A. J. M.; Visser, C. A Global Sustainability Perspective on 3D Printing Technologies. Energy Policy. 2014, 74, 158–167. DOI: 10.1016/j.enpol.2014.08.033.
  • Goh, G. D.; Yap, Y. L.; Tan, H. K. J.; Sing, S. L.; Goh, G. L.; Yeong, W. Y. Process–structure–properties in Polymer Additive Manufacturing via Material Extrusion: A Review. Crit. Rev. Solid State Mater. Sci. 2020, 45(2), 113–133. DOI: https://doi.org/10.1080/10408436.2018.1549977.
  • Gurrala, P. K.; Regalla, S. P. Multi-Objective Optimisation of Strength and Volumetric Shrinkage of FDM Parts. Virtual Phys. Prototyp. 2014, 9(2), 127–138. DOI: https://doi.org/10.1080/17452759.2014.898851.
  • Kechagias, J. D.; Zaoutsos, S. P.; Chaidas, D.; Vidakis, N. Multi-Parameter Optimization of Pla/coconut Wood Compound for Fused Filament Fabrication Using Robust Design. Int. J. Adv. Manuf. Technol. 2022, 119(7–8), 4317–4328. DOI: https://doi.org/10.1007/s00170-022-08679-2.
  • Vidakis, N.; Petousis, M.; Vairis, A.; Savvakis, K.; Maniadi, A. On the Compressive Behavior of an FDM Steward Platform Part. J. Comput. Des. Eng. 2017, 4(4), 339–346. DOI: 10.1016/j.jcde.2017.06.001.
  • Azizi, S.; David, E.; Fréchette, M. F.; Nguyen-Tri, P.; Ouellet-Plamondon, C. M. Electrical and Thermal Phenomena in Low-Density Polyethylene/carbon Black Composites Near the Percolation Threshold. J. Appl. Polym. Sci. 2019, 136(6), 47043. DOI: https://doi.org/10.1002/app.47043.
  • Coogan, T. J.; Kazmer, D. O. Bond and Part Strength in Fused Deposition Modeling. Rapid Prototyp. J. 2017, 23(2), 414–422. DOI: https://doi.org/10.1108/RPJ-03-2016-0050.
  • Aida, H. J.; Nadlene, R.; Mastura, M. T.; Yusriah, L.; Sivakumar, D.; Ilyas, R. A. Natural Fibre Filament for Fused Deposition Modelling (FDM): A Review. Int. J. Sustain. Eng. 2021, 14(6), 1988–2008. DOI: https://doi.org/10.1080/19397038.2021.1962426.
  • Ramesh, P.; Vinodh, S. Analysis of Factors Influencing Energy Consumption of Material Extrusion-Based Additive Manufacturing Using Interpretive Structural Modelling. Rapid Prototyp. J. 2021, 27(7), 1363–1377. DOI: https://doi.org/10.1108/RPJ-05-2020-0100.
  • Suárez, L.; Domínguez, M. Sustainability and Environmental Impact of Fused Deposition Modelling (FDM) Technologies. Int. J. Adv. Manuf. Technol. 2020, 106(3–4), 1267–1279. DOI: https://doi.org/10.1007/s00170-019-04676-0.
  • Laverne, F.; Marquardt, R.; Segonds, F.; Koutiri, I.; Perry, N. Improving Resources Consumption of Additive Manufacturing Use During Early Design Stages: A Case Study. Int. J. Sustain. Eng. 2019, 12(6), 365–375. DOI: https://doi.org/10.1080/19397038.2019.1620897.
  • Garcia, F. L.; Nunes, A. O.; Martins, M. G.; Belli, M. C.; Saavedra, Y. M. B.; Silva, D. A. L.; Moris, V. A. D. S. Comparative LCA of Conventional Manufacturing Vs. Additive Manufacturing: The Case of Injection Moulding for Recycled Polymers. Int. J. Sustain. Eng. 2021, 14(6), 1604–1622. DOI: https://doi.org/10.1080/19397038.2021.1990435.
  • Griffiths, C. A.; Howarth, J.; de Almeida-Rowbotham, G.; Rees, A.; Kerton, R. A Design of Experiments Approach for the Optimisation of Energy and Waste During the Production of Parts Manufactured by 3D Printing. J. Clean. Prod. 2016, 139, 74–85. DOI: https://doi.org/10.1016/j.jclepro.2016.07.182.
  • Peng, T.; Sun, W. Energy Modelling for FDM 3D Printing from a Life Cycle Perspective. Int. J. Manuf. Res. 2017, 12(1), 83. DOI: https://doi.org/10.1504/IJMR.2017.083651.
  • Annibaldi, V.; Rotilio, M. Energy Consumption Consideration of 3D Printing. In 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT); IEEE, 243–248, 2019. 10.1109/METROI4.2019.8792856.
  • Elkaseer, A.; Schneider, S.; Scholz, S. G. Experiment-Based Process Modeling and Optimization for High-Quality and Resource-Efficient FFF 3D Printing. Appl. Sci. 2020, 10(8), 2899. DOI: https://doi.org/10.3390/app10082899.
  • Pantula, P. D.; Miriyala, S. S.; Mitra, K. KERNEL: Enabler to Build Smart Surrogates for Online Optimization and Knowledge Discovery. Mater. Manuf. Process. 2017, 32(10), 1162–1171. DOI: 10.1080/10426914.2016.1269918.
  • Miriyala, S. S.; Pujari, K. N.; Naik, S.; Mitra, K. Evolutionary Neural Architecture Search for Surrogate Models to Enable Optimization of Industrial Continuous Crystallization Process. Powder Technol. 2021. DOI: 10.1016/j.powtec.2022.117527.
  • Inapakurthi, R. K.; Mitra, K. Optimal Surrogate Building Using SVR for an Industrial Grinding Process. Mater. Manuf. Process. 2022, 00, 1–7. DOI: 10.1080/10426914.2022.2039699.
  • Mogilicharla, A.; Mittal, P.; Majumdar, S.; Mitra, K. Kriging Surrogate Based Multi-Objective Optimization of Bulk Vinyl Acetate Polymerization with Branching. Mater. Manuf. Process. 2015, 30(4), 394–402. DOI: 10.1080/10426914.2014.921709.
  • Deb, K.; Mitra, K.; Dewri, R.; Majumdar, S. Towards a Better Understanding of the Epoxy-Polymerization Process Using Multi-Objective Evolutionary Computation. Chem. Eng. Sci. 2004, 59(20), 4261–4277. DOI: 10.1016/j.ces.2004.06.012.
  • Inapakurthi, R. K.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. Data Driven Robust Optimization of Grinding Process Under Uncertainty. Mater. Manuf. Process. 2020, 35(16), 1870–1876. DOI: 10.1080/10426914.2020.1802042.
  • Sharma, S.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. A Novel Data-Driven Sampling Strategy for Optimizing Industrial Grinding Operation Under Uncertainty Using Chance Constrained Programming. Powder Technol. 2021, 377, 913–923. DOI: 10.1016/j.powtec.2020.09.024.
  • Virivinti, N.; Hazra, B.; Mitra, K. Optimizing Grinding Operation with Correlated Uncertain Parameters. Mater. Manuf. Process. 2021, 36(6), 713–721. DOI: 10.1080/10426914.2020.1854473.
  • Dilberoglu, U. M.; Simsek, S.; Yaman, U. Shrinkage Compensation Approach Proposed for ABS Material in FDM Process. Mater. Manuf. Process. 2019, 34(9), 993–998. DOI: https://doi.org/10.1080/10426914.2019.1594252.
  • Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K. M. Preparation and Characterization of Thermally Stable ABS/HDPE Blend for Fused Filament Fabrication. Mater. Manuf. Process. 2020, 35(2), 230–240. DOI: https://doi.org/10.1080/10426914.2019.1692355.
  • Vidakis, N.; Vairis, A.; Petousis, M.; Savvakis, K.; Kechagias, J. Fused Deposition Modelling Parts Tensile Strength Characterisation. Academic Journal of Manufacturing Engineering. 2016, 14, 2.
  • Savvakis, K.; Petousis, M.; Vairis, A.; Vidakis, N.; Bikmeyev, A. T. Experimental Determination of the Tensile Strength of Fused Deposition Modeling Parts. In Imece2014. ASME: Montreal, Quebec, Canada, 2014. doi:10.1115/IMECE2014-37553
  • Phadke, M. S. Quality Engineering Using Robust Design; Prentice Hall PTR: Englewood Cliffs, New Jersey 07632, 1989.
  • Kechagias, J. D.; Aslani, K.-E.; Fountas, N. A.; Vaxevanidis, N. M.; Manolakos, D. E. A Comparative Investigation of Taguchi and Full Factorial Design for Machinability Prediction in Turning of a Titanium Alloy. Measurement. 2020, 151, 107213. DOI: 10.1016/j.measurement.2019.107213.
  • Chaidas, D.; Kechagias, J. D. An Investigation of PLA/W Parts Quality Fabricated by FFF. Mater. Manuf. Process. 2021, 1–9. DOI: 10.1080/10426914.2021.1944193.
  • Ćwikła, G.; Grabowik, C.; Kalinowski, K.; Paprocka, I.; Ociepka, P. The Influence of Printing Parameters on Selected Mechanical Properties of FDM/FFF 3D-Printed Parts. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 227, 012033. DOI: https://doi.org/10.1088/1757-899X/227/1/012033.
  • Arifvianto, B.; Wirawan, Y. B.; Salim, U. A.; Suyitno, S.; Mahardika, M. Effects of Extruder Temperatures and Raster Orientations on Mechanical Properties of the FFF-Processed Polylactic-Acid (PLA) Material. Rapid Prototyp. J. 2021, 27(10), 1761–1775. DOI: https://doi.org/10.1108/RPJ-10-2019-0270.
  • Heller, B. Statistics for Experimenters, an Introduction to Design, Data Analysis, and Model Building: GEP Box, WG Hunter and JS Hunter. Pergamon 1986. John Wiley and Sons: New York, NY, 1978.
  • Bianchi, I.; Forcellese, A.; Mancia, T.; Simoncini, M.; Vita, A. Process Parameters Effect on Environmental Sustainability of Composites FFF Technology. Mater. Manuf. Process. 2022, 37(5), 591–601. DOI: https://doi.org/10.1080/10426914.2022.2049300.
  • el Magri, A.; el Mabrouk, K.; Vaudreuil, S.; Ebn Touhami, M. Experimental Investigation and Optimization of Printing Parameters of 3D Printed Polyphenylene Sulfide through Response Surface Methodology. J. Appl. Polym. Sci. 2021, 138(1), 49625. DOI: https://doi.org/10.1002/app.49625.
  • Maloch, J.; Hnátková, E.; Žaludek, M.; Krátký, P. Effect of Processing Parameters on Mechanical Properties of 3D Printed Samples. Mater. Sci. Forum. 2018, 919, 230–235. DOI: https://doi.org/10.4028/www.scientific.net/MSF.919.230.
  • Kechagias, J. D.; Vidakis, N.; Petousis, M. Parameter Effects and Process Modeling of FFF-TPU Mechanical Response. Mater. Manuf. Process. 2021, 1–11. DOI: 10.1080/10426914.2021.2001523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.