612
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Cu-Sn-Cu transient liquid phase bonding for microsystems packaging

, & ORCID Icon
Pages 284-294 | Received 09 May 2022, Accepted 06 Jul 2022, Published online: 28 Jul 2022

References

  • Langfelder, G.; Bestetti, M.; Gadola, M. Silicon MEMS Inertial Sensors Evolution Over a Quarter Century. J. Micromech. Microeng. 2021, 31(8), 8. DOI: 10.1088/1361-6439/ac0fbf.
  • Pillai, G.; Li, S.-S. Piezoelectric MEMS Resonators: A Review. IEEE Sens. J. 2021, 21(11), 12589–12605. DOI: 10.1109/JSEN.2020.3039052.
  • Hemambar, C.; Srinivasa Rao, B.; Jayaram, V. Al-SiC Electronic Packages with Controlled Thermal Expansion Coefficient by a New Method of Pressureless Infiltration. Mater. Manuf. Process. 2001, 16(6), 779–788. DOI: 10.1081/AMP-100108698.
  • Chen, Z.; Yu, D.; Jiang, F. Development of 3-D Wafer Level Packaging for SAW Filters Using Thin Glass Capping Technology. IEEE Trans. Compon Packag Manuf. Technol. 2022, 12(2), 375–381. DOI: 10.1109/TCPMT.2022.3140863.
  • Takagi, H. Direct Bonding. In 3D and Circuit Integration of MEMS, 1st ed.; Esashi, M., Ed.; Wiley-VCH: Weinheim, 2021; pp. 279–286.
  • Roshanghias, A.; Bardong, J.; Binder, A. Glass Frit Jetting for Advanced Wafer-Level Hermetic Packaging. Materials. 2022, 15(8), 2786. DOI: 10.3390/ma15082786.
  • Szostak, K.-M.; Keshavarz, M.; Constandinou, T.-G. Hermetic Chip-Scale Packaging Using Au:Sn Eutectic Bonding for Implantable Devices. J. Micromech. Microeng. 2021, 31(9), 9. DOI: 10.1088/1361-6439/ac12a1.
  • Park, J.-S.; Zhu, H.; Zhao, Z.; Tseng, A.-A.; Chen, T.-P. Direct Writing of Spot and Line Bonds for Microsystem Packaging Using Transmission Laser Bonding Technique. Mater. Manuf. Process. 2007, 22(1), 71–80. DOI: 10.1080/10426910601015964.
  • Kumar, S.-S.; Ravisankar, B. An Evaluation of Quality of Joints of Two Dissimilar Metals by Diffusion Bonding Using Ultrasonic C Scan. Mater. Manuf. Process. 2016, 31(16), 2084–2090. DOI: 10.1080/10426914.2015.1127957.
  • Guoge, Z.; Chandel, R.-S.; Seow, H.-P. Solid-State Diffusion Bonding of Inconel Alloy 718 to 17-4 PH Stainless Steel. Mater. Manuf. Process. 2001, 16(2), 265–279. DOI: 10.1081/AMP-100104305.
  • Bateni, M.-R.; Mirdamadi, S.; Ashrafizadeh, F.; Szpunar, J.-A.; Drew, R.-A.-L. Formation of Ti-Cu Intermetallic Coatings on Copper Substrate. Mater. Manuf. Process. 2001, 16(2), 219–228. DOI: 10.1081/AMP-100104302.
  • Ghosh, S.-K.; Chatterjee, S. On the Direct Diffusion Bonding of Titanium Alloy to Stainless Steel. Mater. Manuf. Process. 2010, 25(11), 1317–1323. DOI: 10.1080/10426914.2010.520793.
  • Reitz, W.; Dahotre, N.-B. Diffusion Bonding of Laser Surface Melted Nickel Alloy Material. Mater. Manuf. Process. 1998, 13(1), 1–14. DOI: 10.1080/10426919808935216.
  • Taouinet, M.; Kamel, N.-E.; Lebaili, S. Diffusion Bonding Between Zircaloy-4 and 304L Stainless Steel in the Presence of a Eutectic. Mater. Manuf. Process. 2013, 28(12), 1327–1334. DOI: 10.1080/10426914.2013.822982.
  • Jiao, X.; Wang, X.; Kang, X.; Feng, P.; Zhang, L.; Akhtar, F. Effect of Heating Rate on Porous TiAl-Based Intermetallics Synthesized by Thermal Explosion. Mater. Manuf. Process. 2017, 32(5), 489–494. DOI: 10.1080/10426914.2016.1232826.
  • Fan, J.; Lim, D.-F.; Tan, C.-S. Effects of Surface Treatment on the Bonding Quality of Wafer-Level Cu-To-Cu Thermo-Compression Bonding for 3D Integration. J. Micromech. Microeng. 2013, 23(4), 4. DOI: 10.1088/0960-1317/23/4/045025.
  • Floetgen, C.; Corn, K.; Pawlak, M.; van de Wiel, B.; Hayes, G.; Dragoi, V. Cu-Sn Transient Liquid Phase Wafer Bonding: Process Parameters Influence on Bonded Interface Quality. ECS Trans. 2013, 50(7), 177–188. DOI: 10.1149/05007.0177ecst.
  • Liu, H.; Wang, K.; Aasmundtveit, K.-E.; Hoivik, N. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding. J. Electron. Mater. 2012, 41(9), 2453–2462. DOI: 10.1007/s11664-012-2060-3.
  • Kannojia, H.-.Dixit, K. A Review of Intermetallic Compound Growth and Void Formation in Electrodeposited Cu–sn Layers for Microsystems Packaging. J. Mater. Sci.: Mater. Electron. 2021, 32(6), 6742–6777. DOI: 10.1007/s10854-021-05412-9.
  • Faizan, M. Dissolution of Copper and Formation of IMC in Bulk Lead-Free Solders. Mater. Manuf. Process. 2015, 30(2), 169–174. DOI: 10.1080/10426914.2014.941863.
  • Vuorinen, V.; Dong, H.; Ross, G.; Hotchkiss, J.; Kaaos, J.; Paulasto-Kröckel, M. Wafer Level Solid Liquid Interdiffusion Bonding: Formation and Evolution of Microstructures. J. Electron. Mater. 2021, 50(3), 818–824. DOI: 10.1007/s11664-020-08530-y.
  • Vuorinen, V.; Ross, G.; Klami, A.; Dong, H.; Paulasto-Krockel, M.; Wernicke, T.; Ponninger, A. Demonstrating 170 °C Low-Temperature Cu-In-Sn Wafer-Level Solid Liquid Interdiffusion Bonding. IEEE Trans. Compon Packag Manuf. Technol. 2022, 12(3), 446–453. DOI: 10.1109/TCPMT.2021.3111345.
  • Arab, J.; Mishra, D.-K.; Kannojia, H.-K.; Adhale, P.; Dixit, P. Fabrication of Multiple Through-Holes in Non-Conductive Materials by Electrochemical Discharge Machining for RF MEMS Packaging. J. Mater. Process. Technol. 2019, 271, 542–553. DOI: 10.1016/j.jmatprotec.2019.04.032.
  • Kannojia, H.-K.; Arab, J.; Pegu, B.-J.; Dixit, P. Fabrication and Characterization of Through-Glass Vias by the ECDM Process. J. Electrochem. Soc. 2019, 166(13), D531–D538. DOI: 10.1149/2.0141913jes.
  • Kannojia, H.-K.; Sidhique, A.; Shukla, A.-S.; Pednekar, J.; Gupta, S.; Dixit, P. Design and Fabrication of Through-Glass via (TGV) Based 3D Spiral Inductors in Fused Silica Substrate. Microsyst. Technol. 2021. DOI: 10.1007/s00542-021-05244-x.
  • Arab, J.; Dixit, P. Influence of Tool Electrode Feed Rate in the Electrochemical Discharge Drilling of a Glass Substrate. Mater. Manuf. Process. 2020, 1749–1760. DOI:10.1080/10426914.2020.1784936.
  • Arab, J.; Pawar, K.; Dixit, P. Effect of Tool-Electrode Material in Through-Hole Formation Using ECDM Process. Mater. Manuf. Process. 2021, 36(9), 1019–1027. DOI: 10.1080/10426914.2021.1885700.
  • Sharma, P.; Arab, J.; Dixit, P. Through-Holes Micromachining of Alumina Using a Combined Pulse-Feed Approach in ECDM. Mater. Manuf. Process. 2021, 36(13), 1501–1512. DOI: 10.1080/10426914.2021.1905835.
  • Yao, P.; Li, X.; Han, X.; Xu, L. Shear Strength and Fracture Mechanism for Full Cu-Sn Imcs Solder Joints with Different Cu3sn Proportion and Joints with Conventional Interfacial Structure in Electronic Packaging. Solder. Surf. Mt. Technol. 2019, 31(1), 6–19. DOI: 10.1108/SSMT-06-2018-0018.
  • Tamrin, K.-F.; Nukman, Y.; Zakariyah, S.-S. Laser Lap Joining of Dissimilar Materials: A Review of Factors Affecting Joint Strength. Mater. Manuf. Process. 2013, 28(8), 857–871. DOI: 10.1080/10426914.2013.792413.
  • Karimi-Dermani, O.; Abbasi, A.; Azimi Roeen, G.; Nayyeri, M.-J. A Novel Approach to Dissimilar Joining of AA7075 to AZ31B by Friction Stir Soldering Using Sn Intermediate Layer. Mater. Manuf. Process. 2022, 37(8), 942–955. DOI: 10.1080/10426914.2022.2030873.
  • Flötgen, C.; Pawlak, M.; Pabo, E.; van de Wiel, H.-J.; Hayes, G.-R.; Dragoi, V. Wafer Bonding Using Cu-Sn Intermetallic Bonding Layers. Microsyst. Technol. 2014, 20(4–5), 653–662. DOI: 10.1007/s00542-013-2002-x.
  • Sun, L.; Chen, M. H.; Zhang, L. Microstructure Evolution and Grain Orientation of IMC in Cu-Sn TLP Bonding Solder Joints. J. Alloys Compd. 2019, 786, 677–687. DOI: 10.1016/j.jallcom.2019.01.384.
  • Hsu, S.-Y.; Chen, C.-M.; Song, J.-M.; Nishikawa, H. Surface Modification of Cu Electroplated Layers for Cu–sn Transient Liquid Phase Bonding. Mater. Chem. Phys. 2022, 277, 125621. DOI: 10.1016/j.matchemphys.2021.125621.
  • Cimmino, D.; Ferrero, S. High-Voltage Temperature Humidity Bias Test (HV-THB): Overview of Current Test Methodologies and Reliability Performances. Electronics. 2020, 9(11), 1–17. DOI: 10.3390/electronics9111884.
  • Kannojia, H.-K.; Sharma, S.-K.; Dixit, P. Void Formation and Intermetallic Growth in Pulse Electrodeposited Cu-Sn Layers for MEMS Packaging. J. Electron. Mater. 2018, 47(12), 7386–7400. DOI: 10.1007/s11664-018-6679-6.
  • Kannojia, H.-.Dixit, K. Effect of Surface Roughness on Void Formation and Intermetallic Growth in Electrodeposited Cu-Sn Stacks. Mater. Lett. 2019, 257, 126710. DOI: 10.1016/j.matlet.2019.126710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.