348
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation on Micro-Electrical Discharge Machining process for heat treated Nickel-based Nimonic 80A

ORCID Icon & ORCID Icon
Pages 1-12 | Received 21 Mar 2022, Accepted 23 Jun 2022, Published online: 05 Aug 2022

References

  • Thakur, A.; Gangopadhyay, S. State of the Art in Surface Integrity in Machining of Nickel-Based Super Alloys. Int. J. Mach. Tools Manuf. 2016, 100, 25–54. DOI:10.1016/j.ijmachtools.2015.10.001.
  • Pervaiz, S.; Rashid, A.; Deiab, I.; Nicolescu, M. Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys : A Review. Mater. Manuf. Process. 2014, 29(3), 219–252. DOI:10.1080/10426914.2014.880460.
  • Pant, P.; Bharti, P. S. Materials Today : Proceedings Electrical Discharge Machining (EDM) of Nickel-Based Nimonic Alloys : A Review. Mater. Today Proc. 2020, 25, 765–772. DOI:10.1016/j.matpr.2019.09.007.
  • Zou, B.; Chen, M.; Huang, C.; An, Q. Journal of Materials Processing Technology Study on Surface Damages Caused by Turning NiCr20tial Nickel-Based Alloy. 2009, 209, 5802–5809. DOI:10.1016/j.jmatprotec.2009.06.017.
  • Bisaria, H.; Shandilya, P. Experimental Investigation on Wire Electric Discharge Machining (WEDM) of Nimonic C-263 Superalloy. Mater. Manuf. Process. 2019, 34(1), 83–92. DOI:10.1080/10426914.2018.1532589.
  • Sonawane, S. A.; Kulkarni, M. L. Optimization of Machining Parameters of WEDM for Nimonic-75 Alloy Using Principal Component Analysis Integrated with Taguchi Method. J. King Saud Univ. - Eng. Sci. 2018, 30(3), 250–258. DOI:10.1016/j.jksues.2018.04.001.
  • Klink, A.; Schneider, S.; Bergs, T. Development of a Process Signature for Electrical Discharge Machining. CIRP Ann. 2022, 71(1), 177–180. DOI:10.1016/J.CIRP.2022.03.043.
  • Kowalczyk, M.; Tomczyk, K. Assessment of Measurement Uncertainties for Energy Signals Stimulating the Selected NiTi Alloys During the Wire Electrical Discharge Machining. Precis. Eng. 2022, 76, 133–140. DOI:10.1016/J.PRECISIONENG.2022.03.005.
  • Mu, X.; Zhou, M.; Zhang, J.; Lu, N.; Ye, Q. Intelligent Electrical Discharge Machining (EDM) Molybdenum‑titanium‑zirconium Alloy by an Extended Adaptive Control System. J. Manuf. Process. 2022, 77, 207–218. DOI:10.1016/J.JMAPRO.2022.03.003.
  • Das, P.; Chakraborty, S. Application of Grey Correlation-Based EDAS Method for Parametric Optimization of Non-Traditional Machining Processes. Sci. Iran. 2022, 29(2), 864–882. DOI:10.24200/sci.2020.53943.3499.
  • Andromeda, T.; Yahya, A.; Mahmud, N.; Khamis, N. H.; Samion, S.; Baharom, A. Architecture and Training Algorithm of Feed Forward Artificial Neural Network to Predict Material Removal Rate of Electrical Discharge Machining Process. Sci. Iran. 2014, 21(6), 2224–2231. http://scientiairanica.sharif.edu/article_3615.html.
  • Moghaddam, M. A.; Kolahan, F. Modeling and Optimization of the Electrical Discharge Machining Process Based on a Combined Arti Cial Neural Network and Particle Swarm Optimization Algorithm. Sci. Iran. 2020, 27(3), 1206–1217. DOI:10.24200/SCI.2019.5152.1123.
  • Razak, D. M.; Syahrullail, S.; Nuraliza, N.; Azli, Y.; Sapawe, S. Surface Modification of Biomaterial Embedded with Pits Using Die Sinker Machine. Sci. Iran. 2017, 24(4), 1901–1911. DOI:10.24200/sci.2017.4281.
  • Hashim, N. L. S.; Yahya, A.; Daud, M. R.; Syahrullail, S.; Baharom, A.; Khamis, N. H.; Mahmud, N. Review on an Electrical Discharge Machining Servomechanism System. Sci. Iran. 2015, 22(5), 1813–1832. http://scientiairanica.sharif.edu/article_3744.html.
  • Kuriachen, B.; Somashekhar, K. P.; Mathew, J. Multiresponse Optimization of Micro-Wire Electrical Discharge Machining Process. Int. J. Adv. Manuf. Technol. 2015, 76(1–4), 91–104. DOI:10.1007/s00170-014-6005-2.
  • Kumar, K.; Singh, V.; Katyal, P.; Sharma, N. EDM μ-Drilling in Ti-6al-7nb: Experimental Investigation and Optimization Using NSGA-II. Int. J. Adv. Manuf. Technol. 2019, 104(5–8), 2727–2738. DOI:10.1007/s00170-019-04012-6.
  • Coelho, F.; Koshy, P. Vibration Damping Capability of Electrical Discharge Machined Surfaces: Characteristics, Mechanism and Application. Int. J. Mach. Tools Manuf. 2022, 177, 103888. DOI:10.1016/J.IJMACHTOOLS.2022.103888.
  • Gong, S.; Sun, Y. Experimental Study on Forming Consistent Accuracy and Tool Electrode Wear Involved in Fabricating Array Microelectrodes and Array Micro Holes Using Electrical Discharge Machining. J. Manuf. Process. 2022, 79, 126–141. DOI:10.1016/J.JMAPRO.2022.04.046.
  • Tseng, K.; Chen, K.; Chang, C.; Cahyadi, Y.; Chung, M. Implementation of a Micro-Electrical Discharge Machining System to. Mechatronics. 2021, 79, 102649. DOI:10.1016/j.mechatronics.2021.102649.
  • Grigoriev, S. N.; Hamdy, K.; Volosova, M. A.; Okunkova, A. A.; Fedorov, S. V. Electrical Discharge Machining of Oxide and Nitride Ceramics : A Review. Mater. Des. 2021, 209, 109965. DOI:10.1016/j.matdes.2021.109965.
  • Cyril Pilligrin, J.; Asokan, P.; Jerald, J.; Kanagaraj, G.; Mukund Nilakantan, J.; Nielsen, I. Tool Speed and Polarity Effects in Micro-EDM Drilling of 316L Stainless Steel. Prod. Manuf. Res. 2017, 5(1), 99–117. DOI:10.1080/21693277.2017.1357055.
  • Pilligrin, J. C.; Asokan, P.; Jerald, J.; Kanagaraj, G. Effects of Electrode Materials on Performance Measures of Electrical Discharge Micro-Machining. Mater. Manuf. Process. 2018, 33(6), 606–615. DOI:10.1080/10426914.2017.1364757.
  • D’Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C. Investigation on Power Discharge in Micro-EDM Stainless Steel Drilling Using Different Electrodes. J. Mech. Sci. Technol. 2015, 29(10), 4341–4349. DOI:10.1007/s12206-015-0932-1.
  • Unune, D. R.; Nirala, C. K.; Mali, H. S. Accuracy and Quality of Micro-Holes in Vibration Assisted Micro-Electro-Discharge Drilling of Inconel 718. Meas. J. Int. Meas. Confed. 2019, 135, 424–437. DOI:10.1016/j.measurement.2018.11.067.
  • Wang, D.; Zhao, W. S.; Gu, L.; Kang, X. M. A Study on Micro-Hole Machining of Polycrystalline Diamond by Micro-Electrical Discharge Machining. J. Mater. Process. Technol. 2011, 211(1), 3–11. DOI:10.1016/j.jmatprotec.2010.07.034.
  • https://www.specialmetals.com/documents/technical-bulletins/nimonic/.
  • Xu, Y.; Yang, C.; Ran, Q.; Hu, P.; Xiao, X.; Cao, X.; Jia, G. Microstructure Evolution and Stress-Rupture Properties of Nimonic 80A After Various Heat Treatments. Mater. Des. 2013, 47, 218–226. DOI:10.1016/j.matdes.2012.11.043.
  • https://www.aircraftmaterials.com/data/nickel/80a.html.
  • Kunieda, M.; Lauwers, B.; Rajurkar, K. P.; Schumacher, B. M. Advancing EDM Through Fundamental Insight into the Process. CIRP Ann. - Manuf. Technol. 2005, 54(2), 64–87. DOI:10.1016/s0007-8506(07)60020-1.
  • Jerald, J.; Kumanan, S.; Leo Kumar, S. P.; Chandrakar, H. V. Experimental Investigation and Optimisation of Process Parameters in Micro-Electrical Discharge Machining. Int. J. Manuf. Technol. Manag. 2013, 27(1–3), 88–100. DOI:10.1504/IJMTM.2013.058617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.