297
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dissimilar titanium-aluminum skin-stringer joints by FSW: process mechanics and performance

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 471-484 | Received 27 Jul 2022, Accepted 08 Aug 2022, Published online: 28 Aug 2022

References

  • Insight, F. B. Aerospace & Defense Materials Market Size, Share & Industry Analysis; Fortune Business Insights Pvt. Ltd., Maharashtra, India, 2020. https://www.fortunebusinessinsights.com/enquiry/request-sample-pdf/aerospace-defense-materials-market-102980 (accessed Jan 17,2022).
  • Çam, G., and Koçak, M. Joining of Advanced Materials. Encyclopedia of Life Support Systems, Area. 1998, 6, 1–27 .
  • Buffa, G.; Fratini, L.; Marannano, G.; Pasta, A. Effect of the Mutual Position Between Weld Seam and Reinforcement on the Residual Stress Distribution in Friction Stir Welding of AA6082 Skin and Stringer Structures. Thin-Walled Struct. 2016, 103, 62–71. DOI: 10.1016/j.tws.2016.02.003.
  • Gebreamlak, G.; Palani, S.; Sirhabizu, B.; Atnaw, S. M.; Gebremichael, E. Dissimilar Friction Stir Welding Process-A Review. Adv. Mater. Process. Technol. 2022, 1–23. DOI:10.1080/2374068X.2022.2036446.
  • Wagner, F.; Kreimeyer, M.; Kocik, R.; Vollertsen, F. Laser Joining of Aluminum to Titanium with Focus on Aeronautical Applications. In Pacific International Conference on Applications of Lasers and Optics, 2006; Laser Institute of America: 2006, 42–47. DOI: 10.2351/1.5056973.
  • Fratini, L.; Buffa, G.; Filice, L.; Gagliardi, F. Friction Stir Welding of AA6082-T6 T-Joints: Process Engineering and Performance Measurement. Proc. Inst. Mech. Eng. B. 2006, 220(5), 669–676. doi: 10.1243/09544054JEM327
  • Patel, V.; Li, W.; Wang, G.; Wang, F.; Vairis, A.; Niu, P. Friction Stir Welding of Dissimilar Aluminum Alloy Combinations: State-Of-The-Art. Metals. 2019, 9(3), 270. DOI: 10.3390/met9030270.
  • Ramkumar, J.; Singhal, A.; Singh, R. K.; Kumar, P. Butt Joining of Similar & Dissimilar Pipe Material by Cold Joining Process. Adv. Compos. Lett. 2007, 16(5), 173–179. DOI: 10.1177/096369350701600503.
  • Patel, P.; Rana, H.; Badheka, V.; Patel, V.; Li, W. Effect of Active Heating and Cooling on Microstructure and Mechanical Properties of Friction Stir–welded Dissimilar Aluminium Alloy and Titanium Butt Joints. Weld World. 2020, 64(2), 365–378. DOI: 10.1007/s40194-019-00838-6.
  • Mubiayi, M. P., and Akinlabi, E. T. Friction Stir Welding of Dissimilar Materials: An Overview. In Proceedings of World Academy of Science, Engineering and Technology Çanakkale, Turkey, 2013; World Academy of Science, Engineering and Technology(WASET) : pp 65–69.
  • Verma, J.; Taiwade, R. V.; Reddy, C.; Khatirkar, R. K. Effect of Friction Stir Welding Process Parameters on Mg-Az31b/al-AA6061 Joints. Mater. Manuf. Process. 2018, 33(3), 308–314. DOI: 10.1080/10426914.2017.1291957.
  • Ma, Z.; Sun, X.; Ji, S.; Wang, Y.; Yue, Y. Influences of Ultrasonic on Friction Stir Welding of Al/ti Dissimilar Alloys Under Different Welding Conditions. Int. J. Adv. Manuf. Technol. 2021, 112(9), 2573–2582. DOI: 10.1007/s00170-020-06481-6.
  • Kar, A.; Kailas, S. V.; Suwas, S. Effect of Mechanical Mixing in Dissimilar Friction Stir Welding of Aluminum to Titanium with Zinc Interlayer. Trans. Indian Inst. Met. 2019, 72(6), 1533–1536. DOI: 10.1007/s12666-019-01643-x.
  • Kar, A.; Choudhury, S. K.; Suwas, S.; Kailas, S. V. Effect of Niobium Interlayer in Dissimilar Friction Stir Welding of Aluminum to Titanium. Mater. Charact. 2018, 145, 402–412. DOI: 10.1016/j.matchar.2018.09.007.
  • Dressler, U.; Biallas, G.; Mercado, U. A. Friction Stir Welding of Titanium Alloy TiAl6v4 to Aluminium Alloy AA2024-T3. Mater. Sci. Eng. A. 2009, 526(1–2), 113–117. DOI: 10.1016/j.msea.2009.07.006.
  • Rostami, H.; Nourouzi, S.; Jamshidi Aval, H. Analysis of Welding Parameters Effects on Microstructural and Mechanical Properties of Ti6al4v and AA5052 Dissimilar Joint. J. Mech. Sci. 2018, 32(7), 3371–3377. DOI: 10.1007/s12206-018-0640-8.
  • Kar, A.; Suwas, S.; Kailas, S. V. Multi-Length Scale Characterization of Microstructure Evolution and Its Consequence on Mechanical Properties in Dissimilar Friction Stir Welding of Titanium to Aluminum. Metall. Mater. Trans. A. 2019, 50(11), 5153–5173. DOI: 10.1016/j.msea.2018.07.057.
  • Kar, A.; Suwas, S.; Kailas, S. V. Two-Pass Friction Stir Welding of Aluminum Alloy to Titanium Alloy: A Simultaneous Improvement in Mechanical Properties. Mat. Sci. Eng. A-Struct. 2018, 733, 199–210. DOI: 10.1016/j.msea.2018.07.057.
  • Li, B.; Zhang, Z.; Shen, Y.; Hu, W.; Luo, L. Dissimilar Friction Stir Welding of Ti–6al–4v Alloy and Aluminum Alloy Employing a Modified Butt Joint Configuration: Influences of Process Variables on the Weld Interfaces and Tensile Properties. Mater. Des. 2014, 53, 838–848. DOI: 10.1016/j.matdes.2013.07.019.
  • Chen, Y.; Liu, C.; Liu, G. Study on the Joining of Titanium and Aluminum Dissimilar Alloys by Friction Stir Welding. Open Mater. Sci. 2011, 5(1), 6–10. DOI: 10.2174/1874088X00802010006.
  • Fuji, A.; Kimura, M.; North, T.; Ameyama, K.; Aki, M. Mechanical Properties of Titanium-5083 Aluminium Alloy Friction Joints. Mater. Sci. Technol. 1997, 13(8), 673–678. DOI: 10.1179/mst.1997.13.8.673.
  • Buffa, G.; De Lisi, M.; Sciortino, E.; Fratini, L. Dissimilar Titanium/aluminum Friction Stir Welding Lap Joints by Experiments and Numerical Simulation. Adv. Manuf. 2016, 4(4), 287–295. DOI: 10.1007/s40436-016-0157-2.
  • Zhao, H.; Yu, M.; Jiang, Z.; Zhou, L.; Song, X. Interfacial Microstructure and Mechanical Properties of Al/ti Dissimilar Joints Fabricated via Friction Stir Welding. J. Alloys Compd. 2019, 789, 139–149. DOI: 10.1016/j.jallcom.2019.03.043.
  • Campanella, D.; Marcon, G.; Lombardo, A.; Buffa, G.; Fratini, L. The Role of Thermal Contribution in the Design of AA2024 Friction Stir Welded Butt and Lap Joints: Mechanical Properties and Energy Demand. Prod. Eng. 2022, 16(2), 247–259.
  • Patel, V.; De Backer, J.; Hindsefelt, H.; Igestrand, M.; Azimi, S.; Andersson, J.; Säll, J. High Speed Friction Stir Welding of AA6063-T6 Alloy in Lightweight Battery Trays for EV Industry: Influence of Tool Rotation Speeds. Mater. Lett. 2022, 318, 132135. DOI: 10.1016/j.matlet.2022.132135.
  • Su, Y.; Li, W.; Patel, V.; Vairis, A.; Wang, F. Formability of an AA5083 Aluminum Alloy T-Joint Using SSFSW on Both Corners. Mater. Manuf. Process. 2019, 34(15), 1737–1744. DOI: 10.1080/10426914.2019.1669799.
  • Fratini, L.; Buffa, G.; Monaco, L. L. Improved FE Model for Simulation of Friction Stir Welding of Different Materials. Sci. Technol. Weld. Join. 2010, 15(3), 199–207. DOI: 10.1179/136217110X12665048207575.
  • Su, Y.; Li, W.; Gao, F.; Vairis, A. Effect of FSW Process on Anisotropic of Titanium Alloy T-Joint. Mater. Manuf. Process. 2022, 37(1), 25–33. DOI: 10.1080/10426914.2021.1942911.
  • Cederqvist, L.; Reynolds, A. Factors Affecting the Properties of Friction Stir Welded Aluminum Lap Joints. Weld. J. 2001, 80(12), 281–287.
  • Gadakh, V. S.; Badheka, V. J.; Mulay, A. S. Solid-State Joining of Aluminum to Titanium: A Review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235(8), 1757–1799. DOI: 10.1177/14644207211010839.
  • Batalu, D.; Cosmeleata, G.; Aloman, A. Critical Analysis of the Ti-Al Phase Diagrams. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2006, 68(4), 77–90.
  • Simar, A.; Avettand-Fènoël, M.-N. State of the Art About Dissimilar Metal Friction Stir Welding. Sci. Technol. Weld. Join. 2017, 22(5), 389–403. DOI: 10.1080/13621718.2016.1251712.
  • Rana, H.; Badheka, V.; Kumar, A.; Satyaprasad, A. Strategical Parametric Investigation on Manufacturing of Al–mg–zn–cu Alloy Surface Composites Using FSP. Mater. Manuf. Process. 2018, 33(5), 534–545. DOI: 10.1080/10426914.2017.1364752.
  • Lertora, E.; Mandolfino, C.; Gambaro, C. Effect of Welding Parameters on AA8090 Al-Li Alloy FSW T-Joints. In Key Engineering Materials; Trans Tech Publ, 2013; Vol. 554, pp. 985–995. DOI:10.4028/KEM.554-557.985.
  • Sadeghi-Ghoghery, M.; Kasiri-Asgarani, M.; Amini, K. Friction Stir Welding of Dissimilar Joints Between Commercially Pure Titanium Alloy and 7075 Aluminium Alloy. Trans. FAMENA. 2017, 41(1), 81–90. DOI: 10.21278/TOF.41107.
  • Rana, H.; Badheka, V. Elucidation of the Role of Rotation Speed and Stirring Direction on AA 7075-B4C Surface Composites Formulated by Friction Stir Processing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233(5), 977–994. DOI: 10.1177/1464420717736548.
  • Rana, H.; Badheka, V. Influence of Friction Stir Processing Conditions on the Manufacturing of Al-Mg-Zn-Cu Alloy/boron Carbide Surface Composite. J. Mater. Process. Technol. 2018, 255, 795–807. DOI: 10.1016/j.jmatprotec.2018.01.020.
  • Patel, V.; Li, W.; Vairis, A.; Badheka, V. Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement. Crit. Rev. Solid State Mater. Sci. 2019, 44(5), 378–426. DOI: 10.1080/10408436.2018.1490251.
  • Aktarer, S. M.; Küçükömeroğlu, T. Formability Behavior of Friction Stir Processed Dual Phase Steel. Metall. Res. Technol. 2021, 118(6), 1–11. DOI: 10.1051/metal/2021083.
  • Bates, W. P.; Patel, V.; Rana, H.; Andersson, J.; De Backer, J.; Igestrand, M., and Fratini, L. Properties Augmentation of Cast Hypereutectic Al–si Alloy Through Friction Stir Processing. Met. Mater. Int . 2022, 1–14.
  • Asmael, M.; Glaissa, M. Effects of Rotation Speed and Dwell Time on the Mechanical Properties and Microstructure of Dissimilar Aluminum‐titanium Alloys by Friction Stir Spot Welding (FSSW). Materialwissenschaft Und Werkstofftechnik. 2020, 51(7), 1002–1008. DOI: 10.1002/mawe.201900115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.