221
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Multi response optimization of dual jet CO2+SQL in milling Inconel 718

ORCID Icon, , &
Pages 722-734 | Received 24 Jan 2022, Accepted 08 Sep 2022, Published online: 21 Oct 2022

References

  • Ezugwu, E. O.; Wang, Z. M.; Machado, A. R. The Machinability of Nickel-Based Alloys: A Review. J. Mater. Process. Technol. 1998, 86(1–3), 1–16. DOI: 10.1016/S0924-0136(98)00314-8.
  • Dhananchezian, M.; Kumar, M. P.; Sornakumar, T. Cryogenic Turning of AISI 304 Stainless Steel with Modified Tungsten Carbide Tool Inserts. Mater. Manuf. Process. 2011, 26(5), 781–785. DOI: 10.1080/10426911003720821.
  • Pekşen, H.; Kalyon, A. Optimization and Measurement of Flank Wear and Surface Roughness via Taguchi Based Grey Relational Analysis. Mater. Manuf. Process. 2021, 36(16), 1865–1874. DOI: 10.1080/10426914.2021.1926497.
  • Hou, Y.; Zhang, D.; Luo, M.; Wu, B. A Cutting Parameters Selection Method in Milling Aero-Engine Parts Based on Process Condition Matching. Adv. Mech. Eng. 2013, 2013, 157343. DOI: 10.1155/2013/157343.
  • Yildirim, Ç. V.; Kivak, T.; Sarikaya, M.; Şirin, Ş. Evaluation of Tool Wear, Surface Roughness/Topography and Chip Morphology When Machining of Ni-Based Alloy 625 Under MQL, Cryogenic Cooling and CryoMql. J. Mater. Res. Technol. 2020, 9(2), 2079–2092. DOI: 10.1016/j.jmrt.2019.12.069.
  • Ramanan, K. V.; Ramesh Babu, S.; Jebaraj, M.; Nimel Sworna Ross, K. Face Turning of Incoloy 800 Under MQL and Nano-MQL Environments. Mater. Manuf. Process. 2021, 00(00), 1–12. DOI: 10.1080/10426914.2021.1944191.
  • Ahmed, L. S.; Pradeep Kumar, M. Investigation of Cryogenic Cooling Effect in Reaming Ti-6AL-4V Alloy. Mater. Manuf. Process. 2017, 32(9), 970–978. DOI: 10.1080/10426914.2016.1221088.
  • Sen, B.; Mia, M.; Krolczyk, G. M.; Mandal, U. K.; Mondal, S. P. Eco-Friendly Cutting Fluids in Minimum Quantity Lubrication Assisted Machining: A Review on the Perception of Sustainable Manufacturing; Korean Society for Precision Engineering. 2021; Vol. 8. DOI: 10.1007/s40684-019-00158-6.
  • Manimaran, G.; Nimel Sworna Ross, K. Surface Behavior of AISI H13 Alloy Steel Machining Under Environmentally Friendly Cryogenic MQL with PVD-Coated Tool. J. Test. Eval. 2018, 48(4), 4. DOI: 10.1520/JTE20180130.
  • Khan, M. M. A.; Mithu, M. A. H.; Dhar, N. R. Effects of Minimum Quantity Lubrication on Turning AISI 9310 Alloy Steel Using Vegetable Oil-Based Cutting Fluid. J. Mater. Process. Technol. 2009, 209(15–16), 5573–5583. DOI: 10.1016/j.jmatprotec.2009.05.014.
  • Gupta, M. K.; Jamil, M.; Wang, X.; Song, Q.; Liu, Z.; Mia, M.; Hegab, H.; Khan, A. M.; Collado, A. G.; Pruncu, C. I., et al. Performance Evaluation of Vegetable Oil-Based Nano-Cutting Fluids in Environmentally Friendly Machining of Inconel-800 Alloy. Mater. (Basel). 2019, 12, 7. DOI: 10.3390/ma12172792.
  • Nimel Sworna Ross, K.; Manimaran, G. Effect of Cryogenic Coolant on Machinability of Difficult-To-Machine Ni–Cr Alloy Using PVD-TiAln Coated WC Tool. J. Brazilian Soc. Mech. Sci. Eng. 2019, 41(1), 1–14. DOI: 10.1007/s40430-018-1552-3.
  • Jebaraj, M.; Pradeep Kumar, M. Effect of Cryogenic CO 2 and LN 2 Coolants in Milling of Aluminum Alloy. Mater. Manuf. Process. 2019, 34(5), 511–520. DOI: 10.1080/10426914.2018.1532591.
  • Jebaraj, M.; Kumar, M. P. End Milling of DIN 1.2714 Die Steel with Cryogenic CO2 Cooling. J. Mech. Sci. Technol. 2019, 33(5), 2407–2416. DOI: 10.1007/s12206-019-0439-2.
  • Pusavec, F.; Deshpande, A.; Yang, S.; M’Saoubi, R.; Kopac, J.; Dillon, O. W.; Jawahir, I. S. Sustainable Machining of High Temperature Nickel Alloy - Inconel 718: Part 1 - Predictive Performance Models. J. Clean. Prod. 2014, 81, 255–269. DOI: 10.1016/j.jclepro.2014.06.040.
  • Shokrani, A.; Dhokia, V.; Newman, S. T. Investigation of the Effects of Cryogenic Machining on Surface Integrity in CNC End Milling of Ti-6al-4V Titanium Alloy. J. Manuf. Process. 2016, 21, 172–179. DOI: 10.1016/j.jmapro.2015.12.002.
  • Klocke, F.; Krämer, A.; Sangermann, H.; Lung, D. Thermo-Mechanical Tool Load During High Performance Cutting of Hard-To-Cut Materials. Procedia CIRP. 2012, 1(1), 295–300. DOI: 10.1016/j.procir.2012.04.053.
  • Jebaraj, M.; Pradeep Kumar, M.; Yuvaraj, N.; Anburaj, R. Investigation of Surface Integrity in End Milling of 55nicrmov7 Die Steel Under the Cryogenic Environments. Mach. Sci. Technol. 2020, 24(3), 465–488. DOI: 10.1080/10910344.2019.1698612.
  • Jebaraj, M.; Kumar, P.; Anburaj, R. Effect of LN2 and CO2 Coolants in Milling of 55nicrmov7 Steel. J. Manuf. Process. 2020, 53(January), 318–327. DOI: 10.1016/j.jmapro.2020.02.040.
  • Ross, N. S.; Mia, M.; Anwar, S.; Manimaran, G.; Saleh, M.; Ahmad, S. A Hybrid Approach of Cooling Lubrication for Sustainable and Optimized Machining of Ni-Based Industrial Alloy. J. Clean. Prod. 2021, 321(July), 128987. DOI: 10.1016/j.jclepro.2021.128987.
  • Kundu, A.; Mahata, S.; Mukhopadhyay, M.; Ayan Banerjee, B. M.; Das, S. 1. Advanced Manufacturing and Materials Science; Springer International Publishing, 2018. DOi: 10.1007/978-3-319-76276-0.
  • Bagherzadeh, A.; Kuram, E.; Budak, E. Experimental Evaluation of Eco-Friendly Hybrid Cooling Methods in Slot Milling of Titanium Alloy. J. Clean. Prod. 2021, 289, 125817. DOI: 10.1016/j.jclepro.2021.125817.
  • Masoudi, S.; Vafadar, A.; Hadad, M.; Jafarian, F. Experimental Investigation into the Effects of Nozzle Position, Workpiece Hardness, and Tool Type in MQL Turning of AISI 1045 Steel. Mater. Manuf. Process. 2018, 33(9), 1011–1019. DOI: 10.1080/10426914.2017.1401716.
  • Davim, J. P.; Sreejith, P. S.; Silva, J. Turning of Brasses Using Minimum Quantity of Lubricant (MQL) and Flooded Lubricant Conditions. Mater. Manuf. Process. 2007, 22(1), 45–50. DOI: 10.1080/10426910601015881.
  • Ross, N. S.; Sheeba, P. T.; Jebaraj, M.; Stephen, H. Milling Performance Assessment of Ti-6al-4V Under CO2 Cooling Utilizing Coated AlCrn/TiAln Insert. Mater. Manuf. Process. 2021, 00(00), 1–15. DOI: 10.1080/10426914.2021.2001510.
  • Jamil, M.; Khan, A. M.; Hegab, H.; Gong, L.; Mia, M.; Gupta, M. K.; He, N. Effects of Hybrid Al2o3-CNT Nanofluids and Cryogenic Cooling on Machining of Ti–6al–4V. Int. J. Adv. Manuf. Technol. 2019, 102(9–12), 3895–3909. DOI: 10.1007/s00170-019-03485-9.
  • Varghese, V.; Ramesh, M. R.; Chakradhar, D. Experimental Investigation and Optimization of Machining Parameters for Sustainable Machining. Mater. Manuf. Process. 2018, 33(16), 1782–1792. DOI: 10.1080/10426914.2018.1476760.
  • Jebaraj, M.; Pradeep Kumar, M.; Anburaj, R. Investigations on Milling SKT4 Steel by Using Cryogenic Carbon-Dioxide. Mater. Manuf. Process. 2021, 36(12), 1414–1420. DOI: 10.1080/10426914.2021.1914847.
  • Shokrani, A.; Dhokia, V.; Newman, S. T. Comparative Investigation on Using Cryogenic Machining in CNC Milling of Ti-6al-4V Titanium Alloy. Mach. Sci. Technol. 2016, 20(3), 475–494. DOI: 10.1080/10910344.2016.1191953.
  • K, N. S. R.; G, M.; Anwar, S.; Rahman, M. A.; Erdi Korkmaz, M.; Gupta, M. K.; Alfaify, A.; Mia, M. Investigation of Surface Modification and Tool Wear on Milling Nimonic 80A Under Hybrid Lubrication. Tribol. Int. October 2020, 2021155, 106762. DOI: 10.1016/j.triboint.2020.106762.
  • Rakesh, M.; Datta, S. Machining of Inconel 718 Using Coated WC Tool: Effects of Cutting Speed on Chip Morphology and Mechanisms of Tool Wear. Arab. J. Sci. Eng. 2020, 45(2), 797–816. DOI: 10.1007/s13369-019-04171-4.
  • Kuram, E. Nose Radius and Cutting Speed Effects During Milling of AISI 304 Material. Mater. Manuf. Process. 2017, 32(2), 185–192. DOI: 10.1080/10426914.2016.1198019.
  • Liu, C.; Wan, M.; Zhang, W.; Yang, Y. Chip Formation Mechanism of Inconel 718: A Review of Models and Approaches. Chinese J. Mech. Eng. (English Ed. 2021, 34, 1. DOI: 10.1186/s10033-021-00552-9.
  • Sivaiah, P.; Chakradhar, D. Analysis and Modeling of Cryogenic Turning Operation Using Response Surface Methodology. Silicon. 2018, 10(6), 2751–2768. DOI: 10.1007/s12633-018-9816-1.
  • Tosun, N.; Huseyinoglu, M. Effect of MQL on Surface Roughness in Milling of AA7075-T6. Mater. Manuf. Process. 2010, 25(8), 793–798. DOI: 10.1080/10426910903496821.
  • Kumar, R.; Chauhan, S. Study on Surface Roughness Measurement for Turning of Al 7075/10/SiCp and Al 7075 Hybrid Composites by Using Response Surface Methodology (RSM) and Artificial Neural Networking (ANN). Meas. J. Int. Meas. Confed. 2015, 65, 166–180. DOI: 10.1016/j.measurement.2015.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.