298
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermo-stamping shear characteristics of thermoplastics based on X-ray micro-CT

ORCID Icon, &
Pages 668-679 | Received 28 Jul 2022, Accepted 18 Sep 2022, Published online: 20 Oct 2022

References

  • Du, B.; Li, Z.; Bai, H.; Li, Q.; Zheng, C.; Liu, J.; Qiu, F.; Fan, Z.; Hu, H.; Chen, L. Mechanical Property of Long Glass Fiber Reinforced Polypropylene Composite: From Material to Car Seat Frame and Bumper Beam. Polym. 2022, 14(9), 1814. DOI: 10.3390/polym14091814.
  • Reale Batista, M. D.; Drzal, L. T.; Kiziltas, A.; Mielewski, D. Hybrid Cellulose-Inorganic Reinforcement Polypropylene Composites: Lightweight Materials for Automotive Applications. Polym. Compos. 2020, 41(3), 1074–1089. DOI: 10.1002/pc.25439.
  • Xue, Y.; Zhao, H.; Zhang, Y.; Gao, Z.; Zhai, D.; Li, Q.; Zhao, G. Design and Multi-Objective Optimization of the Bumper Beams Prepared in Long Glass Fiber-Reinforced Polypropylene. Polym. Compos. 2021, 42(6), 2933–2947. DOI: 10.1002/pc.26026.
  • Dogan, A. Single and Repeated Low-Velocity Impact Response of E-Glass Fiber-Reinforced Epoxy and Polypropylene Composites for Different Impactor Shapes. J. Thermoplas. Compos. 2022, 35(3), 320–336. DOI: 10.1177/0892705719886911.
  • Kumar, P.; Sharma, S. K.; Singh, R. K. R. Recent Trends and Future Outlooks in Manufacturing Methods and Applications of FGM: A Comprehensive Review. Mater. Maunf. Process. 2022, 1–35. DOI: 10.1080/10426914.2022.2075892.
  • Lu, Y.; Li, Y.; Zhang, Y.; Dong, L. Manufacture of Al/CF/PEEK Curved Beams by Hot Stamping Forming Process. Mater. Maunf. Process. 2022, 37(14), 1–13. DOI: 10.1080/10426914.2022.2032140.
  • Sherkatghanad, E.; Lang, L.; Liu, S.; Wang, Y. Innovative Approach to Mass Production of Fiber Metal Laminate Sheets. Mater. Maunf. Process. 2018, 33(5), 552–563. DOI: 10.1080/10426914.2017.1364864.
  • Atalay, O.; Ozturk, F. Effects of Gripper Location and Blank Geometry on the Thermoforming of a Carbon-Fiber Woven-Fabric/polyphenylene Sulfide Composite Sheet. J. Thermoplas. Compos. 2022, 089270572210898. DOI:10.1177/08927057221089830.
  • Kulhan, T.; Kamboj, A.; Gupta, N.; Somani, N. Fabrication Methods of Glass Fibre Composites—a Review. Funct. Compos. Struct. 2022, 4(2), 022001. DOI: 10.1088/2631-6331/ac6411.
  • Ryu, J. C.; Kim, J. H.; Kam, D. H.; Ko, D. C. Feasibility of One-Shot Forming for Manufacturing of Steel/CFRP Hybrid B-Pillar. Mater. Maunf. Process. 2022, 37(14), 1–15. DOI: 10.1080/10426914.2022.2039693.
  • Liu, M.; Wang, L.; Peng, X. Testing, Characterizing, and Forming of Glass Twill Fabric/Polypropylene Prepregs. J. Compos. Mater. 2019, 53(28–30), 3939–3950. DOI: 10.1177/0021998319851215.
  • Stamopoulos, A. G.; Di Ilio, A.; Di Genova, L. G. Simulation of the Thermoforming Process of Glass Fiber–Reinforced Polymeric Components: Investigation of the Combined Effect of the Crosshead Speed and Material Temperature. Int. J. Adv. Manuf. Tech. 2021, 117(9), 2987–3009. DOI: 10.1007/s00170-021-07845-2.
  • Zhu, H.; Ou, H.; Popov, A. Incremental Sheet Forming of Thermoplastics: A Review. Int. J. Adv. Manuf. Tech. 2020, 111(1), 565–587. DOI: 10.1007/s00170-020-06056-5.
  • Khan, M. A.; Pasco, C.; Reynolds, N.; Kendall, K. Shear Deformability Characteristics of a Rapid-Cure Woven Prepreg Fabric. Int. J. Mater. Form. 2021, 14(1), 133–142. DOI: 10.1007/s12289-019-01532-0.
  • Lux, B.; Fial, J.; Schmidt, O.; Carosella, S.; Middendorf, P.; Fox, B. Development of a Shear Forming Envelope for Carbon Fibre Non-Crimp Fabrics. J. Ind. Text. 2022, 51, 2089S–2105S. DOI: 10.1177/15280837211015470.
  • Qu, Z.; Gao, S.; Zhang, Y.; Jia, J. Analysis of the Mechanical and Preforming Behaviors of Carbon-Kevlar Hybrid Woven Reinforcement. Polym. 2021, 13(23), 4088. DOI: 10.3390/polym13234088.
  • Wang, Z.; Xie, H.; Luo, Q.; Li, Q.; Sun, G. Optimization for Formability of Plain Woven Carbon Fiber Fabrics. Int. J. Mech. Sci. 2021, 197, 106318. DOI: 10.1016/j.ijmecsci.2021.106318.
  • Jauffret, M.; Cocchi, A.; Naouar, N.; Hochard, C.; Boisse, P. Textile Composite Damage Analysis Taking into Account the Forming Process. Mater. 2020, 13(23), 5337. DOI: 10.3390/ma13235337.
  • Sisca, L.; Locatelli Quacchia, P. T.; Messana, A.; Airale, A. G.; Ferraris, A.; Carello, M.; Monti, M.; Palenzona, M.; Romeo, A.; Liebold, C., et al. Validation of a Simulation Methodology for Thermoplastic and Thermosetting Composite Materials Considering the Effect of Forming Process on the Structural Performance. Polym. 2020, 12(12), 2801.
  • Griffiths, P. R.; Harris, T. A. Machine Learning Workflow for Microparticle Composite Thin-Film Process–Structure Linkages. J. Coat. Technol. Res. 2022, 19(1), 83–96. DOI: 10.1007/s11998-021-00512-x.
  • Limaye, M.; Pradeep, S. A.; Kothari, A.; Savla, S.; Agha, A.; Pilla, S.; Li, G. Thermoforming Process Effects on Structural Performance of Carbon Fiber Reinforced Thermoplastic Composite Parts Through a Manufacturing to Response Pathway. Compos. Part B-Eng. 2022, 235, 109728. DOI: 10.1016/j.compositesb.2022.109728.
  • Lee, J.-M.; Jeong, K.-H.; Moon, Y.-H.; Park, J.-H.; Ko, D.-C. Structural Analysis of Woven-Fabric Composite Considering Changes in Degrees of In-Plane Shear Deformation During Manufacturing Process. J. Mech. Sci. Technol. 2021, 35(3), 1177–1186. DOI: 10.1007/s12206-021-0231-y.
  • Liu, K.; Zhang, B.; Xu, X.; Ye, J. Experimental Characterization and Analysis of Fiber Orientations in Hemispherical Thermostamping for Unidirectional Thermoplastic Composites. Int. J. Mater. Form. 2019, 12(1), 97–111. DOI: 10.1007/s12289-018-1410-y.
  • Bean, P.; Lopez-Anido, R. A.; Vel, S. Integration of Material Characterization, Thermoforming Simulation, and As-Formed Structural Analysis for Thermoplastic Composites. Polym. 2022, 14(9), 1877. DOI: 10.3390/polym14091877.
  • Poppe, C.; Dörr, D.; Henning, F.; Kärger, L. Experimental and Numerical Investigation of the Shear Behaviour of Infiltrated Woven Fabrics. Compos. A. 2018, 114, 327–337. DOI: 10.1016/j.compositesa.2018.08.018.
  • Baumard, T.; Menary, G.; De Almeida, O.; Martin, P.; Schmidt, F.; Bikard, J. Experimental Characterization and Modeling of the Temperature and Rate-Dependent Shear Behaviour of Powder-Impregnated Glass Fiber/PA66 Woven Semipregs. Compos. Sci. Technol. 2019, 180, 23–32. DOI: 10.1016/j.compscitech.2019.05.011.
  • Chen, Q.; Boisse, P.; Park, C. H.; Saouab, A.; Bréard, J. Intra/inter-Ply Shear Behaviors of Continuous Fiber Reinforced Thermoplastic Composites in Thermoforming Processes. Compos. Struct. 2011, 93(7), 1692–1703. DOI: 10.1016/j.compstruct.2011.01.002.
  • Wang, L.; Xu, P.; Peng, X.; Zhao, K.; Wei, R. Characterization of Inter-Ply Slipping Behaviors in Hot Diaphragm Preforming: Experiments and Modelling. Compos. A. 2019, 121, 28–35. DOI: 10.1016/j.compositesa.2019.03.012.
  • Tullu, A.; Lee, B. S.; Hwang, H. Y. Surrogate Model Based Analysis of Inter-Ply Shear Stress in Fiber Reinforced Thermoplastic Composite Sheet Press Forming. Appl. Sci. 2020, 10(16), 5499. DOI: 10.3390/app10165499.
  • Wang, L.; Wang, J.; Liu, M.; Peng, X. Development and Verification of a Finite Element Model for Double Diaphragm Preforming of Unidirectional Carbon Fiber Prepreg. Compos. A. 2020, 135, 105924. DOI: 10.1016/j.compositesa.2020.105924.
  • Santhanakrishnan Balakrishnan, V.; Yellur, M. R.; Roesch, J. J.; Ulke-Winter, L.; Seidlitz, H. Experimental and Numerical Investigation on Draping Behaviour of Woven Carbon Fabric. J. Ind. Text. 2022, 51, 3575S–3592S. DOI: 10.1177/15280837211038850.
  • Engel, B.; Graef, J. FE Analysis of the Influence of Fiber Orientation to Shearing and Wrinkling of Fiber Reinforced Thermoplastic Parts. Key Eng. Mater. 2017, 742(1), 732–739. https://doi.org/10.4028/www.scientific.net/KEM.742.732
  • Brands, D.; di Genova, L. G.; Pierik, E. R.; Grouve, W. J. B.; Wijskamp, S.; Akkerman, R. Formability Experiments for Unidirectional Thermoplastic Composites. Key Eng. Mater. 2022, 926, 1358–1371. DOI: 10.4028/p-x3g086.
  • Bae, D.; Kim, S.; Lee, W.; Yi, J. W.; Um, M. K.; Seong, D. G. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry. Mater. 2018, 11(5), 857. DOI: 10.3390/ma11050857.
  • Zheng, B.; Gao, X.; Li, M.; Deng, T.; Huang, Z.; Zhou, H.; Li, D. Formability and Failure Mechanisms of Woven CF/PEEK Composite Sheet in Solid-State Thermoforming. Polym. 2019, 11(6), 966. DOI: 10.3390/polym11060966.
  • Deng, T.; Huang, Z.; Peng, X.; Chen, C.; Lu, X.; Zhou, H.; Zhou, H. Injection Over-Molding Warpage Prediction of Continuous Fiber-Reinforced Thermoplastic Composites Considering Yarn Reorientation. Thin. Wall. Struct. 2022, 180, 109804. DOI: 10.1016/j.tws.2022.109804.
  • Wang, Z.; Zhang, W.; Luo, Q.; Zheng, G.; Li, Q.; Sun, G. A Novel Failure Criterion Based Upon Forming Limit Curve for Thermoplastic Composites. Compos. Part B-Eng. 2020, 202, 108320. DOI: 10.1016/j.compositesb.2020.108320.
  • Jeong, E.; Kim, Y.; Hong, S.; Yoon, K.; Lee, S. Innovative Injection Molding Process for the Fabrication of Woven Fabric Reinforced Thermoplastic Composites. Polym. 2022, 14(8), 1577. DOI: 10.3390/polym14081577.
  • Kim, J. H.; Jung, Y. H.; Lambiase, F.; Moon, Y. H.; Ko, D. C. Novel Approach Toward the Forming Process of CFRP Reinforcement with a Hot Stamped Part by Prepreg Compression Molding. Mater. 2022, 15(14), 4743. DOI: 10.3390/ma15144743.
  • Naouar, N.; Vasiukov, D.; Park, C. H.; Lomov, S. V.; Boisse, P. Meso-FE Modelling of Textile Composites and X-Ray Tomography. J. Mater. Sci. 2020, 55(36), 16969–16989. DOI: 10.1007/s10853-020-05225-x.
  • Holmes, J.; Sommacal, S.; Stachurski, Z.; Das, R.; Compston, P. Digital Image and Volume Correlation with X-Ray Micro-Computed Tomography for Deformation and Damage Characterisation of Woven Fibre-Reinforced Composites. Compos. Struct. 2022, 279, 114775. DOI: 10.1016/j.compstruct.2021.114775.
  • Stelzer, P. S.; Plank, B.; Major, Z. Mesostructural Simulation of Discontinuous Prepreg Platelet Based Carbon Fibre Sheet Moulding Compounds Informed by X-Ray Computed Tomography. Nondestruct. Test. Eva. 2020, 35(3), 342–358. DOI: 10.1080/10589759.2020.1774584.
  • Wang, Z.; Luo, Q.; Li, Q.; Sun, G. Design Optimization of Bioinspired Helicoidal CFRPP/GFRPP Hybrid Composites for Multiple Low-Velocity Impact Loads. Int. J. Mech. Sci. 2022, 219, 107064. DOI: 10.1016/j.ijmecsci.2022.107064.
  • Arns, J. Y.; Oromiehie, E.; Arns, C.; Prusty, B. G. Micro-CT Analysis of Process-Induced Defects in Composite Laminates Using AFP. Mater. Maunf. Process. 2021, 36(13), 1561–1570. DOI: 10.1080/10426914.2020.1866192.
  • Hanhan, I.; Agyei, R. F.; Xiao, X.; Sangid M. D. Predicting Microstructural Void Nucleation in Discontinuous Fiber Composites Through Coupled in-Situ X-Ray Tomography Experiments and Simulations. Sci. Rep. 2020, 10(1), 1–8. DOI: 10.1038/s41598-020-60368-w.
  • Dangora, L. M.; Hansen, C. J.; Mitchell, C. J.; Sherwood, J. A.; Parker, J. C. Challenges Associated with Shear Characterization of a Cross-Ply Thermoplastic Lamina Using Picture Frame Tests. Compos. A. 2015, 78, 181–190. DOI: 10.1016/j.compositesa.2015.08.015.
  • Wang, C.; Shankar, K.; Morozov, E.; Ram Ramakrishnan, K.; Fien, A. Characterization of Shear Behavior in Stainless Steel Wire Mesh Using Bias-Extension and Picture Frame Tests. J. Eng. Mech. 2020, 146(2), 04019127. DOI: 10.1061/(ASCE)EM.1943-7889.0001710.
  • Jimenez Martin, C.; Maes, V. K.; McMahon, T.; Kratz, J. The Role of Bias Extension Testing to Guide Forming of Non-Crimp Fabrics. Front. Mater. 2022, 9, 825830. DOI: 10.3389/fmats.2022.825830.
  • Brands, D.; Wijskamp, S.; Grouve, W. J. B.; Akkerman, R. In-Plane Shear Characterization of Unidirectional Fiber Reinforced Thermoplastic Tape Using the Bias Extension Method. Front. Mater. 2022, 9, 332. DOI: 10.3389/fmats.2022.863952.
  • Ziegs, J. P.; Weck, D.; Gude, M.; Kästner, M. Thermo-Mechanical Modeling of the Temperature Dependent Forming Behavior of Thermoplastic Prepregs. Eng. Reports. 2020, e12373. DOI: 10.1002/eng2.12373.
  • Boisse, P.; Colmars, J.; Hamila, N.; Naouar, N.; Steer, Q. Bending and Wrinkling of Composite Fiber Preforms and Prepregs. A Review and New Developments in the Draping Simulations. Compos. Part B-Eng. 2018, 141, 234–249. DOI: 10.1016/j.compositesb.2017.12.061.
  • Liang, B.; Boisse, P. A Review of Numerical Analyses and Experimental Characterization Methods for Forming of Textile Reinforcements. Chinese J. Aeronaut. 2021, 34(8), 143–163. DOI: 10.1016/j.cja.2020.09.027.
  • Sorba, G.; Binetruy, C.; Chinesta, F. In-Plane Shearing of a UD Prepreg Modeled as Transversely Isotropic Fluid: Comparison Between Continuous and Discontinuous Fiber Tension Approaches. AIP Conf. Proc. 2016, 1769(1), 1–6. DOI: 10.1063/1.4963564.
  • Deghboudj, S.; Boukhedena, W.; Hamid, S. Numerical Analysis of the In-Plane Shear Behavior of Commingled Fiber Glass–Polypropylene Composite Reinforcement Using Hypoelastic Constitutive Model. J. Compos. Mater. 2022, 56(6), 849–859. DOI: 10.1177/00219983211065209.
  • Wang, P.; Hamila, N.; Boisse, P. Thermoforming Simulation of Multilayer Composites with Continuous Fibres and Thermoplastic Matrix. Compos. Part B-Eng. 2013, 52, 127–136. DOI: 10.1016/j.compositesb.2013.03.045.
  • Wang, Z.; Zhu, G. Development of the Temperature-Dependent Constitutive Model of Glass Fiber Reinforced Polypropylene Composites. Mater. Maunf. Process. 2021, 1–11. DOI: 10.1080/10426914.2021.2016817.
  • Korkmaz, M.; Okur, A. The Review About the Numerical Modelling and Analysis of 3D Woven Fabrics. J. Text. I. 2022, 1–27. DOI: 10.1080/00405000.2022.2048517.
  • Wang, Y.; Luo, W.; Huang, J.; Peng, C.; Wang, H.; Yuan, C.; Chen, G.; Zeng, B.; Dai, L. Simplification of Hyperelastic Constitutive Model and Finite Element Analysis of Thermoplastic Polyurethane Elastomers. Macromol. Theor. Simul. 2020, 29(4), 1–12. DOI: 10.1002/mats.202000009.
  • Selezneva, M.; Naouar, N.; Denis, Y.; Gorbatikh, L.; Hine, P.; Lomov, S. V.; Swolfs, Y.; Verpoest, I.; Boisse, P. Identification and Validation of a Hyperelastic Model for Self-Reinforced Polypropylene Draping. Int. J. Mater. Form. 2021, 14(1), 55–65. DOI: 10.1007/s12289-020-01542-3.
  • Yildirim, H.; Ozturk, F. A Benchmark Study of the Material Models for Forming Simulation of Woven Fabrics. J. Text. I. 2021, 1–12. DOI: 10.1080/00405000.2021.1914409.
  • Guzman-Maldonado, E.; Hamila, N.; Naouar, N.; Moulin, G.; Boisse, P. Simulation of Thermoplastic Prepreg Thermoforming Based on a Visco-Hyperelastic Model and a Thermal Homogenization. Mater. Des. 2016, 93, 431–442. DOI: 10.1016/j.matdes.2015.12.166.
  • Chen, Y.; Wang, Z.; Zhu, G. Structural Design of Multimaterial Columns Accounting for Multiple Loads. Int. J. Mech. Sci. 2022, 227, 107427. DOI: 10.1016/j.ijmecsci.2022.107427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.