168
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimentation and optimization of deep hole drilling parameters for SS316L

, &
Pages 770-781 | Received 25 Apr 2022, Accepted 24 Oct 2022, Published online: 23 Nov 2022

References

  • Liu, (peter). “7m”advantage of Abrasive Waterjet for Machining Advanced Materials. J. Manuf. Mater. Process. 2017, 1(1), 11. DOI: 10.3390/jmmp1010011.
  • Wang, J.; Kuriyagawa, T.; Huang, C. Z. An Experimental Study to Enhance the Cutting Performance in Abrasive Waterjet Machining. Mach. Sci. Technol. 2003, 7(2), 191–207. DOI: 10.1081/mst-120022777.
  • Umanath, K.; Devika, D.; Rashia Begum, S. Experimental Investigation of Role of Particles Size and Cutting Passes in Abrasive Waterjet Machining Process on Titanium Alloy (Ti–6al–4V) Using Taguchi’s Method. Mater. Manuf. Process. 2021, 36(8), 936–949. DOI: 10.1080/10426914.2020.1866202.
  • Fuse, K.; Chaudhari, R.; Vora, J.; Patel, V. K.; de Lacalle, L. N. L. Multi-Response Optimization of Abrasive Waterjet Machining of Ti6al4v Using Integrated Approach of Utilized Heat Transfer Search Algorithm and RSM. Mater. (Basel). 2021, 14(24), 7746. DOI: 10.3390/ma14247746.
  • Singh, S.; Shan, H. S.; Kumar, P. Experimental Studies on Mechanism of Material Removal in Abrasive Flow Machining Process. Mater. Manuf. Process. 2008, 23(7), 714–718. DOI: 10.1080/10426910802317110.
  • Heinemann, R.; Hinduja, S.; Barrow, G.; Petuelli, G. The Performance of Small Diameter Twist Drills in Deep-Hole Drilling. J. Manuf. Sci. Eng. 2006, 128(4), 884–892. DOI: 10.1115/1.2335859.
  • Khan, M. A.; Soni, H.; Mashinini, P. M.; Uthayakumar, M. Abrasive Water Jet Cutting Process Form Machining Metals and Composites for Engineering Applications: A Review. Eng. Res. Exp. 2021, 3(2), 022004. DOI: 10.1088/2631-8695/abfe98.
  • Hamatani, G.; Ramulu, M. Machinability of High Temperature Composites by Abrasive Waterjet. J. Eng. Mater. Technol. 1990, 112(4), 381–386. DOI: 10.1115/1.2903346.
  • Hashish, M.; Whalen, J. Precision Drilling of Ceramic-Coated Components with Abrasive-Waterjets. J. Eng. Gas Turbines Power. 1993, 115(1), 148–154. DOI: 10.1115/1.2906669.
  • Wakuda, M.; Yamauchi, Y.; Kanzaki, S. Material Response to Particle Impact During Abrasive Jet Machining of Alumina Ceramics. J. Mater. Process. Technol. 2003, 132(1–3), 177–183. DOI: 10.1016/s0924-0136(02)00848-8.
  • Orbanic, H.; Junkar, M. An Experimental Study of Drilling Small and Deep Blind Holes with an Abrasive Water Jet. Proc. Inst. Mech. Eng. Pt. B. 2004, 218(5), 503–508. DOI: 10.1177/095440540421800504.
  • Akkurt, A. The Effect of Material Type and Plate Thickness on Drilling Time of Abrasive Water Jet Drilling Process. Mater. Des. 2009, 30(3), 810–815. DOI: 10.1016/j.matdes.2008.05.049.
  • Liu, H.-T.; Schubert, E. Piercing in Delicate Materials with Abrasive-Waterjets. Int. J. Adv. Manuf. Technol. 2009, 42(3–4), 263–279. DOI: 10.1007/s00170-008-1583-5.
  • Boud, F.; Carpenter, C.; Folkes, J.; Shipway, P. H. Abrasive Waterjet Cutting of a Titanium Alloy: The Influence of Abrasive Morphology and Mechanical Properties on Workpiece Grit Embedment and Cut Quality. J. Mater. Process. Technol. 2010, 210(15), 2197–2205. DOI: 10.1016/j.jmatprotec.2010.08.006.
  • Li, H.; Wang, J. An Experimental Study of Abrasive Waterjet Machining of Ti-6al-4V. Int. J. Adv. Manuf. Technol. 2015, 81(1–4), 361–369. DOI: 10.1007/s00170-015-7245-5.
  • Thirumalai Kumaran, S.; Uthayakumar, M.; Mathiyazhagan, P.; Krishna Kumar, K.; Muthu Kumar, P. Effect of Abrasive Grain Size of the AWJM Performance on AA(6351)-SiC-B4C Hybrid Composite. Appl. Mech. Mater. 2015, 766–767, 324–329.
  • Alberdi, A.; Artaza, T.; Suárez, A.; Rivero, A.; Girot, F. An Experimental Study on Abrasive Waterjet Cutting of CFRP/Ti6al4v Stacks for Drilling Operations. Int. J. Adv. Manuf. Technol. 2016, 86(1–4), 691–704. DOI: 10.1007/s00170-015-8192-x.
  • Marichamy, S.; Ravichandran, M.; Stalin, B.; Babu, S. B. Optimization of Abrasive Water Jet Machining Parameters for α-β Brass Using Taguchi Methodology. FME Trans. 2019, 47(1), 116–121. DOI: 10.5937/fmet1901116m.
  • Trivedi, P.; Dhanawade, A.; Kumar, S. An Experimental Investigation on Cutting Performance of Abrasive Water Jet Machining of Austenite Steel (AISI 316L). Adv. Mater. Process. Technol. 2015, 1(3–4), 263–274. DOI: 10.1080/2374068x.2015.1128176.
  • Lenin Raj, S.; Rajadurai, A. Experimental Study on Deep-Hole Making in Ti-6al-4V by Abrasive Water Jet Machining. Mater. Res. Express. 2019, 6(6), 066532. DOI: 10.1088/2053-1591/ab0c35.
  • Siva Prasad, K.; Chaitanya, G. Experimental Study on Surface Roughness and Dimensional Accuracy of Hole Machining Process on GFRP Composites Using Abrasive Water Jet Technique. Mater. Today Proc. 2020, 23, 651–658. DOI: 10.1016/j.matpr.2019.05.463.
  • Khan, S. Z.; Khan, T. M.; Joya, Y. F.; Khan, M. A.; Ahmed, S.; Shah, A. Assessment of Material Properties of AISI 316L Stainless Steel Using Non-Destructive Testing. Nondestr. Test. Eval. 2016, 31(4), 360–370. DOI: 10.1080/10589759.2015.1121265.
  • Chandar, J. B.; Nagarajan, L.; Kumar, M. S. Recent Research Progress in Deep Hole Drilling Process: A Review. Surf. Rev. Lett. 2021, 28(11), 2130003. DOI: 10.1142/s0218625x21300033.
  • Selvakumar, G.; Lenin, N.; Prakash, S. S. R. Experimental Study on Abrasive Water Jet Machining of AA5083 in a Range of Thicknesses. Int. J. Abras. Technol. 2018, 8(3), 218. DOI: 10.1504/IJAT.2018.094170.
  • Hocheng, H.; Tsai, H. Y.; Shiue, J. J.; Wang, B. Feasibility Study of Abrasive-Waterjet Milling of Fiber-Reinforced Plastics. J. Manuf. Sci. Eng. 1997, 119(2), 133–142. DOI: 10.1115/1.2831088.
  • Muralidharan, S.; Aatthisugan, I.; Tripathi, A.; Baradiya, H.; Singh, A. A Study on Machinability of Polymer Composite by Abrasive Water Jet Machining. IOP Conf. Ser Mater. Sci. Eng. 2018, 402, 012102. DOI: 10.1088/1757-899x/402/1/012102.
  • Altin Karataş, M.; Motorcu, A. R.; Gökkaya, H. Optimization of Machining Parameters for Kerf Angle and Roundness Error in Abrasive Water Jet Drilling of CFRP Composites with Different Fiber Orientation Angles. J. Braz. Soc. Mech. Sci. Eng. 2020, 42(4). DOI: 10.1007/s40430-020-2261-2.
  • Natarajan, Y.; Murugesan, P. K.; Mohan, M.; Liyakath Ali Khan, S. A. Abrasive Water Jet Machining Process: A State of Art of Review. J. Manuf. Process. 2020, 49, 271–322. DOI: 10.1016/j.jmapro.2019.11.030.
  • Armağan, M. Cutting of St37 Steel Plates in Stacked Form with Abrasive Water Jet. Mater. Manuf. Process. 2021, 36(11), 1305–1313. DOI: 10.1080/10426914.2021.1906895.
  • Aljarah, I.; Mafarja, M.; Heidari, A. A.; Faris, H.; Mirjalili, S. Multi-Verse Optimizer: Theory, Literature Review, and Application in Data Clustering. In Nature-Inspired Optimizers, 2020; pp. 123–141. doi:10.1007/978-3-030-12127-3_8.
  • Fu, Y.; Zhou, M.; Guo, X.; Qi, L.; Sedraoui, K. Multiverse Optimization Algorithm for Stochastic Biobjective Disassembly Sequence Planning Subject to Operation Failures. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52(2), 1041–1051. DOI: 10.1109/tsmc.2021.3049323.
  • Sayed, G. I.; Darwish, A.; Hassanien, A. E. A New Chaotic Multi-Verse Optimization Algorithm for Solving Engineering Optimization Problems. J. Exp. Theor. Artif. Intell. 2018, 30(2), 293–317. DOI: 10.1080/0952813x.2018.1430858.
  • Khalilpourazari, S.; Naderi, B.; Khalilpourazary, S. Multi-Objective Stochastic Fractal Search: A Powerful Algorithm for Solving Complex Multi-Objective Optimization Problems. Soft Comput. 2020, 24(4), 3037–3066. DOI: 10.1007/s00500-019-04080-6.
  • Ruiz-Garcia, R.; Mayuet Ares, P. F.; Vazquez-Martinez, J. M.; Salguero Gómez, J. Influence of Abrasive Waterjet Parameters on the Cutting and Drilling of CFRP/UNS A97075 and UNS A97075/CFRP Stacks. Mater. (Basel). 2018, 12(1), 107. DOI: 10.3390/ma12010107.
  • Mohamad, W. N. F.; Kasim, M. S.; Norazlina, M. Y.; Hafiz, M. S. A.; Izamshah, R.; Mohamed, S. B. Effect of Standoff Distance on the Kerf Characteristic During Abrasive Water Jet Machining. Results Eng. 2020, 6(100101), 100101. DOI: 10.1016/j.rineng.2020.100101.
  • Qasem, I.; Hussien, A.; Kataraki, P. S.; Janvekar, A. A. Performance of Cutting Parameters for Surface Excellence on 304 Stainless Steel Using Abrasive Water Jet Technique. Res. Square. 2021. DOI: 10.21203/rs.3.rs-629431/v1.
  • Llanto, J. M.; Vafadar, A.; Aamir, M.; Tolouei-Rad, M. Analysis and Optimization of Process Parameters in Abrasive Waterjet Contour Cutting of AISI 304L. Metals (Basel). 2021, 11(9), 1362. DOI: 10.3390/met11091362.
  • Hlaváčová, I. M.; Sadílek, M.; Váňová, P.; Szumilo, Š.; Tyč, M. Influence of Steel Structure on Machinability by Abrasive Water Jet. Mater. (Basel). 2020, 13(19), 4424. DOI: 10.3390/ma13194424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.