261
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Machinability Studies on Commercially Pure Titanium (Grade-2) Under Cryogenic Condition

, & ORCID Icon
Pages 1463-1471 | Received 01 Aug 2022, Accepted 23 Oct 2022, Published online: 01 Dec 2022

References

  • Khan, A.; Maity, K. A Comprehensive GRNN Model for the Prediction of Cutting Force, Surface Roughness and Tool Wear During Turning of CP-Ti Grade 2. Silicon. 2018, 10(5), 2181–2191. DOI: https://doi.org/10.1007/s12633-017-9749-0.
  • Palraj, S.; Venkatachari, G. Effect of Biofouling on Corrosion Behaviour of Grade 2 Titanium in Mandapam Seawaters. Desalination. 2008, 230(1–3), 92–99. DOI: 10.1016/j.desal.2007.11.018.
  • Ramesh, S.; Karunamoorthy, L.; Palanikumar, K. Fuzzy Modeling and Analysis of Machining Parameters in Machining Titanium Alloy. Mater. Manuf. Process. 2008, 23(4), 439–447. DOI: https://doi.org/10.1080/10426910801976676.
  • Khan, A.; Maity, K. Comparative Study of Some Machinability Aspects in Turning of Pure Titanium with Untreated and Cryogenically Treated Carbide Inserts. J. Manuf. Process. 2017, 28, 272–284. DOI: http://dx.doi.org/10.1016/j.jmapro.2017.05.018.
  • Jawaid, A.; Che-Haron, C.; Abdullah, A. Tool Wear Characteristics in Turning of Titanium Alloy Ti-6246. J. Mater. Process Technol. 1999, 92, 329–334. DOI: 10.1016/S0924-0136(99)00246-0.
  • Sharma, V. S.; Dogra, M.; Suri, N. Cooling Techniques for Improved Productivity in Turning. Int. J. Mach. Tool. Manuf. 2009, 49(6), 435–453. DOI: https://doi.org/10.1016/J.IJMACHTOOLS.2008.12.010.
  • Jawahir, I.; Attia, H.; Biermann, D.; Duflou, J.; Klocke, F.; Meyer, D.; Newman, S.; Pusavec, F.; Putz, M.; Rech, J., et al. Cryogenic Manufacturing Processes. CIRP Annals. 2016, 65(2), 713–736. DOI: https://doi.org/10.1016/j.cirp.2016.06.007.
  • Hong, S. Y.; Zhao, Z. Thermal Aspects, Material Considerations and Cooling Strategies in Cryogenic Machining. Clean Prod. Processes. 1999, 1(2), 107–116. DOI: 10.1007/s100980050016.pdf.
  • Hong, S. Y.; Ding, Y. Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti-6al-4V. Int. J. Mach. Tool. Manuf. 2001, 41(10), 1417–1437. DOI: http://dx.doi.org/10.1016/S0890-6955(01)00026-8.
  • Ramana, M. V.; Rao, G. K. M.; Rao, D. H. Optimization and Effect of Process Parameters on Tool Wear in Turning of Titanium Alloy Under Different Machining Conditions. Int. J. Mater. Mech. Manuf. 2014, 2(4), 272–277. DOI: https://doi.org/10.7763/IJMMM.2014.V2.141.
  • Liu, Z.; An, Q.; Xu, J.; Chen, M.; Han, S. Wear Performance of (Nc-Altin)/(a-Si3n4) Coating and (Nc-Alcrn)/(a-Si3n4) Coating in High-Speed Machining of Titanium Alloys Under Dry and Minimum Quantity Lubrication (MQL) Conditions. Wear. 2013, 305(1–2), 249–259. DOI: https://doi.org/10.1016/j.wear.2013.02.001.
  • Lakshmanan, S.; Pradeep Kumar, M.; Dhananchezian, M.; Yuvaraj, N. Investigation of Monolayer Coated WC Inserts on Turning Ti-Alloy. Mater. Manuf. Process. 2020, 35(7), 826–835. DOI: 10.1080/10426914.2020.1711930.
  • Shokrani, A.; Dhokia, V.; Newman, S. T. Investigation of the Effects of Cryogenic Machining on Surface Integrity in CNC End Milling of Ti–6al–4V Titanium Alloy. J. Manuf. Process. 2016, 21, 172–179. DOI: 10.1016/j.jmapro.2015.12.002.
  • Ahmed, M. I.; Ismail, A. F.; Abakr, Y.; Amin, A. N. Effectiveness of Cryogenic Machining with Modified Tool Holder. J. Mater. Process. Technol. 2007, 185(1–3), 91–96. DOI: 10.1016/2Fj.jmatprotec.2006.03.123.
  • Safari, H.; Sharif, S.; Izman, S.; Jafari, H.; Kurniawan, D. Cutting Force and Surface Roughness Characterization in Cryogenic High-Speed End Milling of Ti–6al-4V ELI. Mater. Manuf. Process. 2014, 29(3), 350–356. DOI: 10.1080/10426914.2013.872257.
  • Schoop, J.; Sales, W. F.; Jawahir, I. High Speed Cryogenic Finish Machining of Ti-6al4v with Polycrystalline Diamond Tools. J.Mater. Process. Technol. 2017, 250, 1–8. DOI: 10.1016/j.jmatprotec.2017.07.002.
  • Gupta, M. K.; Sood, P. K.; Singh, G.; Sharma, V. S. Sustainable Machining of Aerospace Material–Ti (Grade-2) Alloy: Modeling and Optimization. J. Cleaner Prod. 2017, 147, 614–627. DOI: http://dx.doi.org/10.1016/j.jclepro.2017.01.133.
  • Khan, A.; Maity, K. Influence of Cutting Speed and Cooling Method on the Machinability of Commercially Pure Titanium (CP-Ti) Grade II. J. Manuf. Process. 2018, 31, 650–661. DOI: 10.1016/J.JMAPRO.2017.12.021.
  • Khan, A.; Maity, K. Machinability Assessment of Commercially Pure Titanium (CP-Ti) During Turning Operation: Application Potential of GRA Method. Proceedings of IOP Conference Series: Materials Science and Engineering. DOI: http://dx.doi.org/10.1088/1757-899X/338/1/012005.
  • Pekşen, H.; Kalyon, A. Optimization and Measurement of Flank Wear and Surface Roughness via Taguchi Based Grey Relational Analysis. Mater. Manuf. Process. 2021, 36(16), 1865–1874. DOI: https://doi.org/10.1080/10426914.2021.1926497.
  • Gupta, M. K.; Sood, P.; Sharma, V. S. Machining Parameters Optimization of Titanium Alloy Using Response Surface Methodology and Particle Swarm Optimization Under Minimum-Quantity Lubrication Environment. Mater. Manuf. Process. 2016, 31(13), 1671–1682. DOI: https://doi.org/10.1080/10426914.2015.1117632.
  • Chauhan, S.; Dass, K. Optimization of Machining Parameters in Turning of Titanium (Grade-5) Alloy Using Response Surface Methodology. Mater. Manuf. Process. 2012, 27(5), 531–537. DOI: http://dx.doi.org/10.1080/10426914.2011.593236.
  • Garcia, U.; Ribeiro, M. Ti6al4v Titanium Alloy End Milling with Minimum Quantity of Fluid Technique Use. Mater. Manuf. Process. 2016, 31(7), 905–918. DOI: https://doi.org/10.1080/10426914.2015.1048367.
  • Ramesh, S.; Karunamoorthy, L.; Palanikumar, K. Surface Roughness Analysis in Machining of Titanium Alloy. Mater. Manuf. Process. 2008, 23(2), 174–181. DOI: https://doi.org/10.1080/10426910701774700.
  • Khan, A.; Maity, K. Statistical Modelling and Machinability Assessment of Commercially Pure Titanium (CP-Ti) Grade II: An Experimental Investigation. Measurement. 2019, 137, 664–672. DOI: 10.1016/j.measurement.2019.02.018.
  • Sivalingam, V.; Sun, J.; Selvam, B.; Murugasen, P. K.; Yang, B.; Waqar, S. Experimental Investigation of Tool Wear in Cryogenically Treated Insert During End Milling of Hard Ti Alloy. J. Brazil. Soci. Mech. Sci. Engg. 2019, 41(2), 1–14. DOI: https://doi.org/10.1007/s40430-019-1612-3.
  • Sivalingam, V.; Zhuoliang, Z.; Jie, S.; Baskaran, S.; Yuvaraj, N.; Gupta, M. K.; Aqib, M. K. Use Of Atomized Spray Cutting Fluid Technique For The Turning Of A Nickel BaseSuperalloy. Mater. Manuf. Process. 2021, 36(3), 373–380. DOI: https://doi.org/10.1080/10426914.2020.1832687.
  • James Dhilip, J. D.; Jeevan, J.; Arulkirubakaran, D.; Ramesh, M. Investigation And Optimization Of Parameters For Hard Turning Of OHNS Steel. Mater. Manuf. Process. 2020, 35(10), 1113–1119. DOI: https://doi.org/10.1080/10426914.2020.1765254.
  • Singh, G.; Aggarwal, V.; Singh, S. Experimental Investigations Into Machining Performance Of Hastelloy C-276 In Different Cooling Environments. Mater. Manuf. Process. 2021, 36(15), 1789–1799. DOI: https://doi.org/10.1080/10426914.2021.1945099.
  • Paturi, U. M. R.; Cheruku, S.; Salike, S.; Pasunuri, V. P. K.; Reddy, N. Estimation Of Machinability Performance In Wire-EDM On Titanium Alloy Using Neural Networks. Mater. Manuf. Process. 2022, 37(9), 1–12. DOI: https://doi.org/10.1080/10426914.2022.2030875.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.