182
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electrochemical micromachining of magnesium AZ31 alloy using minimum quantity electrolyte

ORCID Icon & ORCID Icon
Pages 1406-1415 | Received 30 Jul 2022, Accepted 28 Nov 2022, Published online: 13 Dec 2022

References

  • Rahman, M.; Li, Y.; Wen, C. HA Coating on Mg Alloys for Biomedical Applications: A Review. J. Magnes. Alloy. 2020, 8(3), 929–943. DOI: 10.1016/j.jma.2020.05.003.
  • Tan, J.; Ramakrishna, S. Applications of Magnesium and Its Alloys: A Review. Appl. Sci. 2021, 11(15), 6861. DOI: https://doi.org/10.3390/app11156861.
  • Chakraborty Banerjee, P.; Al-Saadi, S.; Choudhary, L.; Harandi, S. E.; Singh, R. Magnesium Implants: Prospects and Challenges. Materials. 2019, 12(1), 136. DOI: https://doi.org/10.3390/ma12010136.
  • Peron, M.; Torgersen, J.; Berto, F. Mg and Its Alloys for Biomedical Applications: Exploring Corrosion and Its Interplay with Mechanical Failure. Metals. 2017, 7, 252. DOI: 10.3390/met7070252.
  • Han, L.; Li, X.; Xue, F.; Chu, C.; Bai, J. Biocorrosion Behavior of Micro-Arc-Oxidized AZ31 Magnesium Alloy in Different Simulated Dynamic Physiological Environments. Surf. Coat. Technol. 2019, 361, 240–248. DOI: 10.1016/j.surfcoat.2019.01.052.
  • Rahman, M.; Dutta, N. K.; Roy Choudhury, N. Magnesium Alloys with Tunable Interfaces as Bone Implant Materials, Front. Bioeng. Biotechnol. 2020, 8, 564. DOI: 10.3389/fbioe.2020.00564.
  • Peron, M.; Bin Afif, A.; Dadlani, A. L.; Berto, F.; Torgersen, J. Improving Stress Corrosion Cracking Behavior of AZ31 Alloy with Conformal Thin Titania and Zirconia Coatings for Biomedical Applications. Mech. Behav. Biomed. Mater. 2020, 111, 104005. DOI: 10.1016/j.jmbbm.2020.104005.
  • Kumarasamy, G.; Lakshmanan, P.; Thangamani, G. Electrochemical Micromachining of Hastelloy C276 by Different Electrolyte Solutions. Arab. J. Sci. Eng. 2021, 46(3), 2243–2259. DOI: https://doi.org/10.1007/s13369-020-05032-1.
  • Leese, R. J.; Ivanov, A. Electrochemical Micromachining: An Introduction. Adv. Mech. Eng. 2016, 8(1), 1–13. DOI: 10.1177/1687814015626860.
  • Thanigaivelan, R.; Arunachalam, R. M.; Jerald, J.; Niranjan, T. Applications of Taguchi Technique with Fuzzy Logic to Optimise an Electrochemical Micromachining Process. Int. J. Exp. Des. Process Optim. 2011, 2(4), 283–298. DOI: 10.1504/IJEDPO.2011.043565.
  • VinodKumaar, J. R.; Thanigaivelan, R. Performance of Magnetic Field-Assisted Citric Acid Electrolyte on Electrochemical Micro-Machining of SS 316L. Mater. Manuf. Process. 2020. DOI: 10.1080/10426914.2020.1750630.
  • Thanigaivelan, R.; Arunachalam, R. M.; Mukesh, K.; Dheeraj, B. P. Performance of Electrochemical Micromachining of Copper Through Infrared Heated Electrolyte. Mater. Manuf. Process. 2017, 33(4), 383–389. DOI: 10.1080/10426914.2017.1279304.
  • Geethapriyan, T.; Manoj Samson, R.; Thavamani, J.; Arun Raj, A. C.; Pulagam, B. R. Experimental Investigation of Electrochemical Micro Machining Process Parameters on Stainless Steel 316 Using Sodium Chloride Electrolyte. Adv. Manuf. Proc. 2018, 471–480. DOI: 10.1007/978-981-13-1724-8_45.
  • Yang, Y.; Natsu, W.; Zhao, W. Realization of Eco-Friendly Electrochemical Micromachining Using Mineral Water as an Electrolyte. Precis. Eng. 2011, 35(2), 204–213. DOI: 10.1016/j.precisioneng.2010.09.009.
  • Soundarrajan, M.; Thanigaivelan, R. Investigation on Electrochemical Micromachining (ECMM) of Copper Inorganic Material Using UV Heated Electrolyte. Russ. J. Appl. Chem. 2018, 91(11), 1805–1813. DOI: 10.1134/S1070427218110101.
  • Rahman, Z.; Das, A.; Chattopadhyaya, S. Microhole Drilling Through Electrochemical Processes: A Review. Mater. Manuf. Process. 2018, 33(13), 1379–1405. DOI: 10.1080/10426914.2017.1401721.
  • Lee, E. S.; Won, J. K.; Shin, T. H.; Kim, S. H. Investigation of Machining Characteristics for Electrochemical Micro-Deburring of the AZ31 Lightweight Magnesium Alloy. Int. J. Precis. Eng. Manuf. 2012, 13(3), 339–345. DOI: https://doi.org/10.1007/s12541-012-0043-1.
  • Viswanathan, R.; Ramesh, S.; Suburban, V. Measurement and Optimization of Performance Characteristics in Turning of Mg Alloy Under Dry and MQL Conditions. Measurement. 2018, 120, 107–113. DOI: 10.1016/j.measurement.2018.02.018.
  • Liu, F.; Ji, Y.; Sun, Z.; Liu, J.; Bai, Y.; Shen, Z. Enhancing Corrosion Resistance and Mechanical Properties of AZ31 Magnesium Alloy by Friction Stir Processing with the Same Speed Ratio. J. Alloys Compd. 2020, 829, 154452. DOI: 10.1016/j.jallcom.2020.154452.
  • Xie, W.; Zhao, Y.; Liao, B.; Pang, P.; Wuu, D.; Zhang, S. Al-AlN Composite Coatings on AZ31 Magnesium Alloy for Surface Hardening and Corrosion Resistance. Vacuum. 2021, 188, 110146. DOI: 10.1016/j.vacuum.2021.110146.
  • Fernández-Hernán, J. P.; Torres, B.; López, A. J.; Martínez-Campos, E.; Rams, J. Sol-Gel Coatings Doped with Graphene Nanoplatelets for Improving the Degradation Rate and the Cytocompatibility of AZ31 Alloy for Biomedical Applications. Surf. Coat. Technol. 2021, 426, 127745. DOI: 10.1016/j.surfcoat.2021.127745.
  • Kaseem, M.; Zehra, T.; Dikici, B.; Dafali, A.; Yang, H.W.; Ko, Y.G.. Improving the Electrochemical Stability of AZ31 Mg Alloy in a 3.5wt.% NaCl Solution via the Surface Functionalization of Plasma Electrolytic Oxidation Coating. J. Magnes. Alloy. 2022, 10(5), 1311–1325. DOI: 10.1016/j.jma.2021.08.028.
  • Ayyappan, S.; Siva Kumar, K.; Kalaimathi, M. Electrochemical Machining of 20MnCr5 Alloy Steel with Magnetic Flux Assisted Vibrating Tool. Proc. Inst. Mech. Eng. Part C. 2017, 231(10), 1956–1965. DOI: 10.1177/0954406215623310.
  • Thirumalaikumarasamy, D.; Shanmugam, K.; Balasubramanian, V. Comparison of the Corrosion Behaviour of AZ31B Magnesium Alloy Under Immersion Test and Potentiodynamic Polarization Test in NaCl Solution. J. Magnes. Alloy. 2014, 2(1), 36–49. DOI: 10.1016/j.jma.2014.01.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.