273
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of variable magnetic field assisted EDM on MRR and surface integrity of AZ80 magnesium

ORCID Icon, ORCID Icon, &
Pages 836-847 | Received 19 Aug 2022, Accepted 26 Oct 2022, Published online: 22 Dec 2022

References

  • Kunieda, M. Electrical Discharge Machining Processes. In Handbook of Manufacturing Engineering and Technology. 1551–1580. London: Springer, 2014. doi:10.1007/978-1-4471-4670-4_71
  • Sahoo, R.; Debnath, T.; Patowari, P. K. Machinability Characteristics of Titanium Diamond Using EDM and Its Parametric Optimization. Mater. Manuf. Pro. 2022, 1–11. DOI:10.1080/10426914.2022.2105868.
  • Xu, X.; Wang, K.; Liu, Y. Effect of an External Magnetic Field on Micro-EDM Milling of Inconel 718. Int. J. Adv. Manuf. Technol. 2022, 122, 1311–1320. DOI: 10.1007/s00170-022-09973-9.
  • Shastri, R. K.; Mohanty, C. P.; Dash, S.; Gopal, K. M. P.; Annamalai, A. R.; Jen, C. -P. Reviewing Performance Measures of the Die-Sinking Electrical Discharge Machining Process: Challenges and Future Scopes. Nanomaterials. 2022, 12(3), 384. DOI: 10.3390/nano12030384.
  • Kibria, G.; Bhattacharyya, B.; Davim, J. P. Non-Traditional Micromachining Processes: Fundamentals and Applications; Springer: Cham, Switzerland, 2017. DOI: 10.1007/978-3-319-52009-4.
  • Zhang, Z.; Zhang, Y.; Ming, W.; Zhang, Y.; Cao, C.; Zhang, G. A Review on Magnetic Field Assisted Electrical Discharge Machining. J. Manuf. Processes. 2021, 64, 694–722. DOI: 10.1016/j.jmapro.2021.01.054.
  • Bhatt, G.; Batish, A.; Bhattacharya, A. Experimental Investigation of Magnetic Field Assisted Powder Mixed Electric Discharge Machining. Part. Sci. Technol. 2014, 33(3), 246–256. DOI: 10.1080/02726351.2014.968303.
  • Bhattacharya, A.; Batish, A.; Bhatt, G. Material Transfer Mechanism During Magnetic Field–Assisted Electric Discharge Machining of AISI D2, D3 and H13 Die Steel. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2014, 229(1), 62–74. DOI: 10.1177/0954405414522797.
  • Singh Bains, P.; Sidhu, S. S.; Payal, H. S. Investigation of Magnetic Field-Assisted EDM of Composites. Mater. Manuf. Pro. 2017, 33(6), 670–675. DOI: 10.1080/10426914.2017.1364857.
  • Walkar, H.; Jatti, V. S.; Singh, T. P. Magnetic Field Assisted Electrical Discharge Machining of AISI 4140. Appl. Mech. Mater. 2014, 592-594, 479–483. DOI: 10.4028/scientific.net/amm.592-594.479.
  • Ablyaz, T. R.; Bains, P. S.; Sidhu, S. S.; Muratov, K. R.; Shlykov, E. S. Impact of Magnetic Field Environment on the EDM Performance of Al-SiC Metal Matrix Composite. Micromachines. 2021, 12(5), 469. DOI: 10.3390/mi12050469.
  • Naveen Anthuvan, R.; Krishnaraj, V.; Parthiban, M. Magnetic Field-Assisted Electrical Discharge Machining of Micro-Holes on Ti-6al-4V. Mater. Today Proc. 2021, 39, 1688–1694. DOI: 10.1016/j.matpr.2020.06.153.
  • Sivaprakasam, P.; Hariharan, P.; Elias, G. Experimental Investigations on Magnetic Field-Assisted Micro-Electric Discharge Machining of Inconel Alloy. Int. J. Ambient Energy. 2020, 1–8. DOI:10.1080/01430750.2020.1758782.
  • Rouniyar, A. K.; Shandilya, P. Experimental Investigation on Recast Layer and Surface Roughness on Aluminum 6061 Alloy During Magnetic Field Assisted Powder Mixed Electrical Discharge Machining. J. Mater. Eng. Perform. 2020, 29(12), 7981–7992. DOI: 10.1007/s11665-020-05244-4.
  • Renjith, R.; Paul, L. Machining Characteristics of Micro-Magnetic Field Assisted EDM (Μ-MFAEDM). Mater. Today Proc. 2019, 27, 2000–2004. DOI: 10.1016/j.matpr.2019.09.047.
  • Sivaprakasam, P.; Udaya Prakash, J.; Hariharan, P. Enhancement of Material Removal Rate in Magnetic Field-Assisted Micro Electric Discharge Machining of Aluminium Matrix Composites. Int. J. Ambient Energy. 2019, 1–6. DOI:10.1080/01430750.2019.1653979.
  • Ming, W.; Zhang, Z.; Wang, S.; Zhang, Y.; Shen, F.; Zhang, G. Comparative Study of Energy Efficiency and Environmental Impact in Magnetic Field Assisted and Conventional Electrical Discharge Machining. J. Cleaner Prod. 2019, 214, 12–28. DOI: 10.1016/j.jclepro.2018.12.231.
  • Gholipoor, A.; Baseri, H.; Shakeri, M.; Shabgard, M. Investigation of the Effects of Magnetic Field on Near-Dry Electrical Discharge Machining Performance. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2014, 230(4), 744–751. DOI: 10.1177/0954405414558737.
  • Zhang, Y.; Zhang, G.; Zhang, Z.; Zhang, Y.; Huang, Y. Effect of Assisted Transverse Magnetic Field on Distortion Behavior of Thin-Walled Components in WEDM Process. Chinese J. Aeronaut. 2022, 35(2), 291–307. DOI: 10.1016/j.cja.2020.10.034.
  • Rouniyar, A. K.; Shandilya, P. Effect of Machining Parameters on Surface Roughness and White Layer During Magnetic Field Assisted Powder Mixed EDM of AA6061. Int. J. Mater. Prod Technol. 2022, 64(2), 121. DOI: 10.1504/ijmpt.2022.120656.
  • Khan, M. Y.; Rao, P. S.; Pabla, B. S. An Experimental Study on Magnetic Field-Assisted-EDM Process for Inconel-625. Adv. Mater. Process. Technol. 2022, 1–27. DOI:10.1080/2374068x.2022.2036450.
  • Mogilicharla, A.; Mittal, P.; Majumdar, S.; Mitra, K. Kriging Surrogate Based Multi-Objective Optimization of Bulk Vinyl Acetate Polymerization with Branching. Mater. Manuf. Pro. 2015, 30(4), 394–402. DOI: 10.1080/10426914.2014.921709.
  • Inapakurthi, R. K.; Miriyala, S. S.; Mitra, K. Deep Learning Based Dynamic Behavior Modelling and Prediction of Particulate Matter in Air. Chem. Eng. J. 2021, 426, 131221. DOI: 10.1016/j.cej.2021.131221.
  • Miriyala, S. S.; Pujari, K. N.; Naik, S.; Mitra, K. Evolutionary Neural Architecture Search for Surrogate Models to Enable Optimization of Industrial Continuous Crystallization Process. Powder Technol. 2022, 405, 117527. DOI: 10.1016/j.powtec.2022.117527.
  • Inapakurthi, R. K.; Mitra, K. Optimal Surrogate Building Using SVR for an Industrial Grinding Process. Mater. Manuf. Pro. 2022, 37(15), 1701–1707. DOI: 10.1080/10426914.2022.2039699.
  • Gumte, K.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. Achieving Wealth from Bio-Waste in a Nationwide Supply Chain Setup Under Uncertain Environment Through Data Driven Robust Optimization Approach. J. Cleaner Prod. 2021, 291, 125702. DOI: 10.1016/j.jclepro.2020.125702.
  • Sharma, S.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. A Novel Data-Driven Sampling Strategy for Optimizing Industrial Grinding Operation Under Uncertainty Using Chance Constrained Programming. Powder Technol. 2021, 377, 913–923. DOI: 10.1016/j.powtec.2020.09.024.
  • Inapakurthi, R. K.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. Data Driven Robust Optimization of Grinding Process Under Uncertainty. Mater. Manuf. Pro. 2020, 35(16), 1870–1876. DOI: 10.1080/10426914.2020.1802042.
  • Stewart, J. V. The Magnetic Field of Steady Currents. Intermediate Electromagn. Theory. 2001, 231–294. DOI: 10.1142/9789812810410_0005.
  • Yang, Z.; LI, J.; Zhang, J.; Lorimer, G.; Robson, J. Review on Research and Development of Magnesium Alloys. Acta Metall. Sin. (English Letters). 2008, 21(5), 313–328. DOI: 10.1016/s1006-7191(08)60054-x.
  • Easton, M.; Beer, A.; Barnett, M.; Davies, C.; Dunlop, G.; Durandet, Y.; Blacket, S.; Hilditch, T.; Beggs, P. Magnesium Alloy Applications in Automotive Structures. JOM. 2008, 60(11), 57–62. DOI: 10.1007/s11837-008-0150-8.
  • Rokhlin, L. L. Magnesium Alloys Containing Rare Earth Metals: Structure and Properties; Taylor & Francis: London, 2003. DOI: 10.1201/9781482265163.
  • Karna, S.; S-I, R. An Overview on Taguchi Method. Int. J. Eng. Math Sci. 2012, 1(1), 1–7.
  • Lewis-Beck, C.; Lewis-Beck, M. Applied Regression: An Introduction; SAGE Publications, 2015.
  • Keles, O.; Inal, O. T. A Regression Study on the Solid Particle Erosion of Copper and Copper Alloys by Angular and Spherical Particles at Normal Incidence. Mater. Manuf. Pro. 2002, 17(3), 281–305. DOI: 10.1081/amp-120005377.
  • Judd, C. M.; McClelland, G. H.; Ryan, C. S. Data Analysis, Third Edition. RoutledgeRoutledge:New York2017; Revised edition, 2017. 10.4324/9781315744131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.