221
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of dome shape for filament wound pressure vessels using data-driven evolutionary algorithms

ORCID Icon, , &
Pages 1899-1910 | Received 02 Nov 2022, Accepted 21 Feb 2023, Published online: 08 Mar 2023

References

  • Sowinski, K. Stress Distribution Optimization in Dished Ends of Cylindrical Pressure Vessels. Thin-Walled Structures. 2022, 171, 1–17. DOI: 10.1016/j.tws.2021.108808.
  • Lawate, S.; Deshmukh, B. B. Analysis of Heads of Pressure Vessel. Int. J. Innov. Res. Technol. Sci. Eng. 2015, 4(2), 759–765.
  • Magnucki, K.; Jasion, P.; Rodak, M. Strength and Buckling of an Untypical Dished Head of a Cylindrical Pressure Vessel. Int. J. Pressure Vessels Pip. 2018, 161, 17–21. DOI: 10.1016/j.ijpvp.2018.02.003.
  • Baličevič, P.; Dozak, D.; Mrčela, T. Strength of Pressure Vessels with Ellipsoidal Heads. Strojniski Vestnik. 2008, 54(10), 685–692.
  • Kushwah, S.; Parekh, S.; Mistry, H.; Darji, J.; Gandhi, R. Analysis of Cylindrical Pressure Vessels with Dissimilar Ends and Material Comparison. Mater. Today Proc. 2022, 51, 348–355. DOI: 10.1016/j.matpr.2021.05.466.
  • Tam, J. H.; Ong, Z. C.; Ismail, Z.; Ang, B. C.; Khoo, S. Y. A New Hybrid Ga−aco−pso Algorithm for Solving Various Engineering Design Problems. Int. J. Comput Math. 2019, 96(5), 96. DOI: 10.1080/00207160.2018.1463438.
  • Ali Nagra, A.; Han, F.; Hua Lin, Q. An Improved Hybrid Self-Inertia Weight Adaptive Particle Swarm Optimization Algorithm with Local Search. Eng. Optim. 2019, 51(7), 51. DOI: 10.1080/0305215X.2018.1525709.
  • Mohammed, H.; Rashid, T. A Novel Hybrid GWO with WOA for Global Numerical Optimization and Solving Pressure Vessel Design. Neural. Comput. Appl. 2020, 32(18), 14701–14718. DOI: 10.1007/s00521-020-04823-9.
  • Hussien, G. A.; Ella Hassanien, A.; Houssein, H. E.; Amin, M.; Taher Azar, A. New Binary Whale Optimization Algorithm for Discrete Optimization Problems. Eng. Optim. 2020, 52(6), 945–959. DOI: 10.1080/0305215X.2019.1624740.
  • Rao, R. V.; Pawar, R. B. Self-Adaptive Multi-Population Rao Algorithms for Engineering Design Optimization. Appl. Artif. Intell. 2020, 34(3), 187–250. DOI: 10.1080/08839514.2020.1712789.
  • Azeem, M.; Ya, H. H.; Alam, M. A.; Kumar, M.; Stabla, P.; Smolnicki, M.; Gemi, L.; Khan, R.; Ahmed, T.; Ma, Q., et al. Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review. J. Energy Storage. 2022, 49, 1–11. DOI: 10.1016/j.est.2021.103468.
  • Madhavi, M. Design and Analysis of Filament Wound Composite Pressure Vessel with Integrated-End Domes. Def. Sci. J. 2009, 59(1), 73–81. DOI: 10.14429/dsj.59.1488.
  • Rafiee, R.; Salehi, A. A Novel Recursive Multi-Scale Modeling for Predicting the Burst Pressure of Filament Wound Composite Pressure Vessels. Appl. Phys. A. Mater. Sci .Process. 2022, 128(5), 128. DOI: 10.1007/s00339-022-05505-0.
  • Vasiljev, V. V. Composite Pressure Vessels: Analysis, Design, and Manufacturing; American Society of Mechanical Engineers: New York, 2009.
  • Butt, A. M.; Waheed-Ul-Haq, S. Comparative Study for the Design of Optimal Composite Pressure Vessels. Key Eng. Mater. 2010, 381–388. DOI: 10.4028/w w w.scientific.net/KEM.442.381.
  • Hojjati, M.; Safavi Ardebili, V.; Hoa, S. V. Design of Domes for Polymeric Composite Pressure Vessels. Compos. Eng. 1995, 5(1), 51–59. DOI: 10.1016/0961-9526(95)93979-6.
  • Hofeditz, J. T. Structural Design Considerations for Fibrous Glass Pressure Vessels. Mod. Plast. 1964, 18(41), 127–146.
  • Love, G. G. Structural Analysis of Orthotropic Shells. Aiaa J. 1963, 8(1), 1843–1847. DOI: 10.2514/3.1933.
  • Young, R. E. History and Potential of Filament Winding. 13th Annual Technical Conference SPI – RP, Chicago. 1958.
  • Barbero, E. J. Introduction to Composite Materials Design, 2nd.; CRC Press: Boca Raton, 2011.
  • Sharma, S. Composite Materials - Mechanics, Manufacturing and Modeling; CRC Press: Boca Raton, 2021.
  • Klusemann, B.; Svendsen, B. Homogenization Methods for Multi-Phase Elastic Composites: Comparisons and Benchmarks. Tech. Mech. 2010, 30(4), 374–386.
  • Buragohain, M. K. Composite Structures: Design, Mechanics, Analysis, Manufacturing, and Testing, 1st ed.; CRC Press: London, 2017.
  • Fukunaga, H.; Uemura, M. Optimum Design of Helically Wound Composite Pressure Vessels. Compos. Struct. 1983, 1(1), 31–49. DOI: 10.1016/0263-8223(83)90015-6.
  • Gay, D.; Hoa, S. V.; Tsai, S. W. Composite Materials: Design and Applications, 4th.; CRC Press: Boca Raton, 2003.
  • Zickel, J. Isotensoid Pressure Vessels. ARS J. 1962, 32, 950–951.
  • Miettinen, K. M. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Boston, 1999.
  • Chakraborti, N. Data-Driven Evolutionary Modeling in Materials Technology; CRC Press: Boca Raton, 2023.
  • Pettersson, F.; Chakraborti, N.; Saxén, H. A Genetic Algorithms Based Multi-Objective Neural Net Applied to Noisy Blast Furnace Data. Appl. Soft Comput. 2007, 7(1), 387–397. DOI: 10.1016/j.asoc.2005.09.001.
  • Mondal, D. N.; Sarangi, K.; Pettersson, F.; Sen, P. K.; Saxén, H.; Chakraborti, N. Cu―zn Separation by Supported Liquid Membrane Analyzed Through Multi-Objective Genetic Algorithms. Hydrometallurgy. 2011, 107(3–4), 112–123. DOI: 10.1016/j.hydromet.2011.02.008.
  • Giri, B. K.; Hakanen, J.; Miettinen, K.; Chakraborti, N. Genetic Programming Through Bi-Objective Genetic Algorithms with a Study of a Simulated Moving Bed Process Involving Multiple Objectives. Appl. Soft Comput. 2013, 13(5), 2613–2623. DOI: 10.1016/j.asoc.2012.11.025.
  • Giri, B. K.; Pettersson, F.; Saxén, H.; Chakraborti, N. Genetic Programming Evolved Through Bi-Objective Genetic Algorithms Applied to a Blast Furnace. Mater. Manuf. Processes. 2013, 28(7), 776–782. DOI: 10.1080/10426914.2013.763953.
  • Chakraborti, N. Critical Assessment 3: The Unique Contributions of Multi-Objective Evolutionary and Genetic Algorithms in Materials Research: The Unique Contributions of Multi-Objective Evolutionary and Genetic Algorithms in Materials Research. Mater. Sci. Technol. 2014, 30(11), 1259–1262. DOI: 10.1179/1743284714Y.0000000578.
  • Li, X. A Real-Coded Predator-Prey Genetic Algorithm for Multiobjective Optimization. In Evolutionary Multi-Criterion Optimization, Fonseca, Carlos M., Ed. Springer: Berlin Heidelberg: Berlin, Heidelberg, 2003; pp. 207–221.
  • Al-Aghbari, M.; Gujarathi, A. M. Hybrid Optimization Approach Using Evolutionary Neural Network & Genetic Algorithm in a Real-World Waterflood Development. J. Pet Sci. Eng. 2022, 216, 216. DOI: 10.1016/j.petrol.2022.110813.
  • Mahanta, B. K.; Sarkar, S.; Chakraborti, N.; Chakraborti, N. Consequence of Natural Gas Injection in Blast Furnace: A Critical Appraisal Using a Thermodynamic and Evolutionary Computation Approach. Can. Metall Q. 2021, 61(1), 1–13. DOI: 10.1080/00084433.2021.2016344.
  • Zong, C.; Li, Q.; Li, K.; Song, X.; Chen, D.; Li, X.; Wang, X. Computational Fluid Dynamics Analysis and Extended Adaptive Hybrid Functions Model-Based Design Optimization of an Explosion-Proof Safety Valve. Eng. Appl. Comput. Fluid Mech. 2022, 16(1), 16. DOI: 10.1080/19942060.2021.2010602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.