266
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Efficient and low-damage machining of Ti6Al4V: laser-assisted CBN belt grinding

, , &
Pages 110-122 | Received 17 Jan 2023, Accepted 10 Feb 2023, Published online: 15 Mar 2023

References

  • Drouet, M.; Pichon, L.; Vallet, Y.; Le Bourhis, E.; Christiansen, T. L. Surface Engineering of Titanium Alloy TiAl6v4 by Multi-Interstitial Diffusion Using Plasma Processing. Eur. J. Mater. 2022, 2(1), 1–11. DOI: 10.1080/26889277.2021.2010504.
  • Gu, L.; He, G. J.; Zhao, W. S.; Lahoti, G. High Performance Hybrid Machining of Gamma-TiAl with Blasting Erosion Arc Machining and Grinding. CIRP Ann. Manuf. Technol. 2020, 69(1), 161–164. DOI: 10.1016/j.cirp.2020.04.058.
  • Ma, X.; Li, H. S.; Yue, X. K.; Yang, Y. T.; Wang, L.; Xu, G. L. Electrochemical Turning of (TiB + TiC)/TC4 Composites Using a Rectangular Cathode. J. Electrochem. Soc. 2022, 169(1), 1. DOI: 10.1149/1945-7111/ac377c.
  • Singh, J.; Gill, S. S.; Dogra, M.; Singh, R.; Singh, M.; Sharma, S.; Singh, G.; Li, C. H.; Rajkumar, S. State of the Art Review on the Sustainable Dry Machining of Advanced Materials for Multifaceted Engineering Applications: Progressive Advancements and Directions for Future Prospects. Mater. Res. Express. 2022, 9(6), 6. DOI: 10.1088/2053-1591/ac6fba.
  • Pushp, P.; Dasharath, S. M. Study of Microstructural and Mechanical Properties of Ti-Alloys Synthesis from High Energy Ball Milling by Spark Plasma Sintering-A Review. Key Eng. Mater. 2022, 937, 37–45. DOI: 10.4028/p-y1m22n.
  • Mohanta, M.; Thirugnanam, A. Commercial Pure Titanium–A Potential Candidate for Cardiovascular Stent. Materialwiss Werkstofftech.2022, 53(12), 1518–1543. DOI: 10.1002/mawe.202100306.
  • Bhattacharyya, A.; Payne, S. W. T.; Schueller, J. K. Observation of Non-Taylorian Tool Wear and Machining Parameter Selection for Miniature Milling of Ti-6al-4V on Regular CNC Machines. Aust. J. Mech. Eng. 2022, 20(5), 1439–1452. DOI: 10.1080/14484846.2020.1811514.
  • Raghavendra, S.; Sathyanarayana, P. S.; Kn, T.; Vs, M.; Kn, M. High Speed Machining of Titanium Ti 6al4v Alloy Components: Study and Optimisation of Cutting Parameters Using RSM. Adv. Mater. Process .Te. 2020, 8(1), 1–14. DOI: 10.1080/2374068X.2020.1806684.
  • Zailani, Z. A.; Mativenga, P. T. Boron and Graphene Nanoparticles as Solid Lubricant in Micro Milling of Nickel Titanium Shape Memory Alloys. Int. J. Mach. Mach. Mater. 2022, 24(3–4), 262–279. DOI: 10.1504/IJMMM.2022.125199.
  • Venkatesan, K. The Study on Force, Surface Integrity, Tool Life and Chip on Laser Assisted Machining of Inconel 718 Using Nd: Yag Laser Source. J. Adv. Res. 2017, 8(4), 407–423. DOI: 10.1016/j.jare.2017.05.004.
  • You, K. Y.; Yan, G. P.; Luo, X. C.; Gilchrist, M. D.; Fang, F. Z. Advances in Laser Assisted Machining of Hard and Brittle Materials. J. Manuf. Process. 2020, 58, 677–692. DOI: 10.1016/j.jmapro.2020.08.034.
  • Abdollahi, H.; Shahraki, S.; Teimouri, R. Empirical Modeling and Optimization of Process Parameters in Ultrasonic Assisted Laser Micromachining of Ti-6al-4V. Int. J. Lightweight Mater. Mfg. 2019, 2(4), 279–287. DOI: 10.1016/j.ijlmm.2019.08.008.
  • Ahmed, N.; Ahmad, S.; Anwar, S.; Hussain, A.; Rafaqat, M.; Zaindin, M. Machinability of Titanium Alloy Through Laser Machining: Material Removal and Surface Roughness Analysis. Int. J. Adv. Manuf. Tech. 2019, 105(7–8), 3303–3323. DOI: 10.1007/s00170-019-04564-7.
  • Habrat, W.; Krupa, K.; Markopoulos, A. P.; Karkalos, N. E. Thermo-Mechanical Aspects of Cutting Forces and Tool Wear in the Laser-Assisted Turning of Ti-6al-4V Titanium Alloy Using AlTin Coated Cutting Tools. Int. J. Adv. Manuf. Tech. 2021, 115(3), 759–775. DOI: 10.1007/s00170-020-06132-w.
  • Bliedtner, J.; Henkel, S.; Schwager, A. M.; Götze, K.; Gerhardt, M.; Fuhr, M. New Process Chain for the Production of Complex Freeforms: New Process Chain as Efficient Manufacturing Approach for Fabrication of 3D Glass Parts. Opt. Photonik. 2018, 13(2), 35–39. DOI: 10.1002/opph.201800008.
  • Kong, X.; Liu, S.; Hou, N.; Zhao, M.; Liu, N.; Wang, M. Cutting Performance and Tool Wear in Laser-Assisted Grinding of SiCf/SiC Ceramic Matrix Composites. Mater. Res. Express. 2022, 9(12), 125601. DOI: 10.1088/2053-1591/aca6c5.
  • Meylan, B.; Calderon, I.; Wasmer, K. Optimization of Process Parameters for the Laser Polishing of Hardened Tool Steel. Materials. 2022, 15(21), 7746. DOI: 10.3390/ma15217746.
  • Zhou, K.; Xu, J. Y.; Xiao, G. J.; Huang, Y. A Novel Low-Damage and Low-Abrasive Wear Processing Method of C-F/sic Ceramic Matrix Composites: Laser-Induced Ablation-Assisted Grinding. J. Mater. Process. Tech. 2022, 302, 117503. DOI: 10.1016/j.jmatprotec.2022.117503.
  • Wada, T. Tool Wear of Cubic Boron Nitride in Cutting Sintered Steel. Key Eng. Mater. 2022, 936, 43–48. DOI: 10.4028/p-uh8p14.
  • Tu, L. Q.; Tian, S.; Xu, F.; Wang, X.; Xu, C. H.; He, B.; Zuo, D. W.; Zhang, W. J. Cutting Performance of Cubic Boron Nitride-Coated Tools in Dry Turning of Hardened Ductile Iron. J. Manuf. Process. 2020, 56, 158–168. DOI: 10.1016/j.jmapro.2020.04.081.
  • Rafighi, M.; Özdemir, M.; Das, A.; Das, S. R. Machinability Investigation of Cryogenically Treated Hardened Aisi 4140 Alloy Steel Using Cbn Insert Under Sustainable Finish Dry Hard Turning. Surf. Rev. Lett. 2022, 29(04), 2250047. DOI: 10.1142/S0218625X22500470.
  • Matras, A.; Zębala, W. Optimization of Cutting Data and Tool Inclination Angles During Hard Milling with CBN Tools, Based on Force Predictions and Surface Roughness Measurements. Materials. 2020, 13(5), 1109. DOI: 10.3390/ma13051109.
  • Tankus, K.; Tascioglu, E.; Atay, G.; Brunken, H.; Kaynak, Y. The Effect of Cutting Parameters and Cutting Tools on Machining Performance of Carbon Graphite Material. Mach. Sci. Technol. 2020, 24(1), 96–111. DOI: 10.1080/10910344.2019.1701020.
  • Fan, Y. H.; Wang, W. Y.; Hao, Z. P.; Yuan, H. Y. Effect of Workpiece Atom Diffusion into CBN Tool on Its Mechanical Properties in Cutting Ni-Fe-Cr Alloy Based on Molecular Dynamics Simulation. Int. J. Precis. Eng. Man. 2021, 22(4), 635–647. DOI: 10.1007/s12541-021-00487-0.
  • Shi, Y.; Chen, L. Y.; Xin, H. S.; Yu, T. B.; Sun, Z. L. Investigation on the Grinding Properties of High Thermal Conductivity Vitrified Bond CBN Grinding Wheel for Titanium Alloy. Int. J. Adv. Manuf. Tech. 2020, 107(3–4), 1539–1549. DOI: 10.1007/s00170-020-05134-y.
  • Zieliński, B.; Nadolny, K.; Zawadka, W.; Chaciński, T.; Stachurski, W.; Batalha, G. F. Effect of the Granularity of Cubic Boron Nitride Vitrified Grinding Wheels on the Planar Technical Blades Sharpening Process. Materials. 2022, 15(22), 7989. DOI: 10.3390/ma15227989.
  • Liu, J.; Liu, Z.; Yan, Y.; Wang, X. Study on the CBN Wheel Wear Mechanism of Longitudinal-Torsional Ultrasonic-Assisted Grinding Applied to TC4 Titanium Alloy. Micromachines. 2022, 13(9), 1480. DOI: 10.3390/mi13091480.
  • Liu, X.; Ni, X.; Konda, O.; Furuhashi, H.; Maegawa, S.; Itoigawa, F. Clarification of the Mechanism of Pulse Laser Grinding of Nanosecond Lasers Using High-Speed Camera Imaging. Machines. 2022, 10(3), 196. DOI: 10.3390/machines10030196.
  • Xiao, G. D.; Zhao, B. A.; Ding, W. F.; Huan, H. X. On the Grinding Performance of Metal-Bonded Aggregated cBn Grinding Wheels Based on Open-Pore Structures. Ceram. Int. 2021, 47(14), 19709–19715. DOI: 10.1016/j.ceramint.2021.04.001.
  • Liu, S.; Xiao, G. J.; Lin, O. C.; He, Y.; Song, S. Y. A New One-Step Approach for the Fabrication of Microgrooves on Inconel 718 Surface with Microporous Structure and Nanoparticles Having Ultrahigh Adhesion and Anisotropic Wettability: Laser Belt Processing. Appl. Surf. Sci. 2023, 607, 155108. DOI: 10.1016/j.apsusc.2022.155108.
  • Zhou, K.; Ding, H. H.; Steenbergen, M.; Wang, W. J.; Guo, J.; Liu, Q. Y. Temperature Field and Material Response as a Function of Rail Grinding Parameters. Int. J. Heat Mass Transf. 2021, 175, 121366. DOI: 10.1016/j.ijheatmasstransfer.2021.121366.
  • Hashemi, P. M.; Borhani, E.; Nourbakhsh, M. S. Commercially Pure Titanium Modification to Enhance Corrosion Behavior and Osteoblast Response by ECAP for Biomedical Applications. J. Appl. Biomater. Func. 2022, 20, 22808000221095234. DOI: 10.1177/22808000221095234.
  • Majkowska-Marzec, B.; Sypniewska, J. Microstructure and Mechanical Properties of Laser Surface-Treated Ti13nb13zr Alloy with MWCNTs Coatings. Adv. Mater. Sci. 2021, 21(4), 5–18. DOI: 10.2478/adms-2021-0021.
  • Leite, D. M. C.; de Alencar, M. C.; Mucsi, C. S.; Sousa Araujo, J. V.; Tavarese Pereira, L. A.; Berbel, L. O.; Rossi, J. L. Modifications of Titanium and Zirconium Alloy Surfaces for Use as Dental Implants. In Materials Science Forum; Trans Tech Publications Ltd, 2020, Vol. 1012, pp. 477–482. DOI:10.4028/22808www.scientific.net/MSF.1012.477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.