447
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective optimization in electrochemical micro-drilling of Ti6Al4V using nature-inspired techniques

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1942-1954 | Received 16 Jan 2023, Accepted 16 Mar 2023, Published online: 31 Mar 2023

References

  • Fan, Z. W.; Hourng, L. W. Electrochemical Micro-Drilling of Deep Holes by Rotational Cathode Tools. Int. J. Adv. Manuf. Technol. 2011, 52(5–8), 555–563. DOI: 10.1007/s00170-010-2744-x.
  • Biswas, R.; Kuar, A. S.; Biswas, S. K.; Mitra, S. Effects of Process Parameters on Hole Circularity and Taper in Pulsed Nd: Yag Laser Microdrilling of Tin-Al2o3 Composites. Mater. Manuf. Process. 2010, 25(6), 503–514. DOI: 10.1080/10426910903365737.
  • Tong, H.; Li, Y.; Zhang, L. Swing Mechanism for Micro EDM Drilling of Fuel Jet Nozzles. Adv. Mater. Res. 2012, 591–593, 391–395. www.scientific.net/AMR.591-593.391.
  • Dhobe, S. D.; Doloi, B.; Bhattacharyya, B. Surface Characteristics of ECMed Titanium Work Samples for Biomedical Applications. Int. J. Adv. Manuf. Technol. 2011, 55(1–4), 177–188. DOI: 10.1007/s00170-010-3040-5.
  • Niinomi, M. Titanium Alloys. Encycl. Biomed. Eng. 2019, 1–3, 213–224. DOI: 10.1016/B978-0-12-801238-3.99864-7.
  • Wang, M.; Zhang, Y.; He, Z.; Peng, W. Deep Micro-Hole Fabrication in EMM on Stainless Steel Using Disk Micro-Tool Assisted by Ultrasonic Vibration. J. Mater. Process. Technol. 2016, 229, 475–483. DOI: 10.1016/j.jmatprotec.2015.10.004.
  • Rathod, V.; Doloi, B.; Bhattacharyya, B. Sidewall Insulation of Microtool for Electrochemical Micromachining to Enhance the Machining Accuracy. Mater. Manuf. Process. 2014, 29(3), 305–313. DOI: 10.1080/10426914.2013.864407.
  • Leese, R. J.; Ivanov, A. Electrochemical Micromachining: An Introduction. Adv. Mech. Eng. 2016, 8(1), 1–13. DOI: 10.1177/1687814015626860.
  • Anasane, S. S.; Bhattacharyya, B. Investigation on Micromilling of Through Microslots on Titanium by Electrochemical Micromachining. Int. J. Precis. Technol. 2016, 6(3/4), 231. DOI: 10.1504/ijptech.2016.10000849.
  • Tak, M.; Reddy, S.; Mishra, V.; Mote, A.; G, R. Investigation of Pulsed Electrochemical Micro-Drilling on Titanium Alloy in the Presence of Complexing Agent in Electrolyte. J. Micromanufacturing. 2018, 1(2), 142–153. DOI: 10.1177/2516598418784682.
  • Anasane, S. S.; Bhattacharyya, B. Experimental Investigation on Suitability of Electrolytes for Electrochemical Micromachining of Titanium. Int. J. Adv. Manuf. Technol. 2016, 86(5–8), 2147–2160. DOI: 10.1007/s00170-015-8309-2.
  • Liu, W.; Zhang, H.; Luo, Z.; Zhao, C.; Ao, S.; Gao, F.; Sun, Y. Electrochemical Micromachining on Titanium Using the NaCl-Containing Ethylene Glycol Electrolyte. J. Mater. Process. Technol. 2018, July 2017, 255, 784–794. DOI: 10.1016/j.jmatprotec.2018.01.009.
  • Yu, N.; Fang, X.; Meng, L.; Zeng, Y.; Zhu, D. Electrochemical Micromachining of Titanium Microstructures in an NaCl–Ethylene Glycol Electrolyte. J. Appl. Electrochem. 2018, 48(3), 263–273. DOI: 10.1007/s10800-018-1145-y.
  • Sethi, A.; Acharya, B. R.; Saha, P. Study of the Electrochemical Dissolution Behavior of Nitinol Shape Memory Alloy in Different Electrolytes for Micro-ECM Process. Int. J. Adv. Manuf. Technol. 2022, 121(9–10), 7019–7035. DOI: 10.1007/s00170-022-09802-z.
  • Anasane, S. S.; Bhattacharyya, B. Experimental Investigation into Fabrication of Microfeatures on Titanium by Electrochemical Micromachining. Adv. Manuf. 2016, 4(2), 167–177. DOI: 10.1007/s40436-016-0145-6.
  • Geethapriyan, T.; Kalaichelvan, K.; Muthuramalingam, T.; Rajadurai, A. Performance Analysis of Process Parameters on Machining α–β Titanium Alloy in Electrochemical Micromachining Process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2018, pp 1577–1589. 10.1177/0954405416673103.
  • Goel, H.; Pandey, P. M. Experimental Investigations into the Ultrasonic Assisted Jet Electrochemical Micro-Drilling Process. Mater. Manuf. Process. 2017, 32(13), 1547–1556. DOI: 10.1080/10426914.2017.1279294.
  • Mithu, M. A. H.; Fantoni, G.; Ciampi, J. The Effect of High Frequency and Duty Cycle in Electrochemical Microdrilling. Int. J. Adv. Manuf. Technol. 2011, 55(9–12), 921–933. DOI: 10.1007/s00170-010-3123-3.
  • Wang, J.; Chen, W.; Gao, F.; Han, F. Ultrasonically Assisted Electrochemical Micro Drilling with Sidewall-Insulated Electrode. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230(3), 466–474. DOI: 10.1177/0954405414555740.
  • Das, A. K.; Saha, P. Machining of Circular Micro Holes by Electrochemical Micro-Machining Process. Adv. Manuf. 2013, 1(4), 314–319. DOI: 10.1007/s40436-013-0042-1.
  • Chandrasekhar, S.; Prasad, N. B. V. Multi-Response Optimization of Electrochemical Machining Parameters in the Micro-Drilling of AA6061-TiB2in Situ Composites Using the Entropy–VIKOR Method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234(10), 1311–1322. DOI: 10.1177/0954405420911539.
  • Thangamani, G.; Thangaraj, M.; Moiduddin, K.; Alkhalefah, H.; Mahalingam, S.; Karmiris-Obratański, P. Multiobjective Optimization of Heat-Treated Copper Tool Electrode on EMM Process Using Artificial Bee Colony (ABC) Algorithm. Mater. (Basel). 2022, 15, 14. DOI: 10.3390/ma15144831.
  • Datta, S.; Raza, M. S.; Das, A. K.; Saha, P.; Pratihar, D. K. Experimental Investigations and Parametric Optimization of Laser Beam Welding of NiTinol Sheets by Metaheuristic Techniques and Desirability Function Analysis. Opt. Laser Technol. 2020, December, 124. DOI: 10.1016/j.optlastec.2019.105982.
  • Mehrvar, A.; Basti, A.; Jamali, A. Optimization of Electrochemical Machining Process Parameters: Combining Response Surface Methodology and Differential Evolution Algorithm. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2017, 231(6), 1114–1126. DOI: 10.1177/0954408916656387.
  • Gupta, M. K.; Sood, P. K.; Sharma, V. S. Machining Parameters Optimization of Titanium Alloy Using Response Surface Methodology and Particle Swarm Optimization Under Minimum-Quantity Lubrication Environment. Mater. Manuf. Process. 2016, 31(13), 1671–1682. DOI: 10.1080/10426914.2015.1117632.
  • Singh, N.; Bharti, P. S. Multi-Objective Parametric Optimization During Micro-EDM Drilling of Ti-6al-4 V Using Teaching Learning Based Optimization Algorithm. Mater. Today Proc. 2022, 62, 262–269. DOI: 10.1016/j.matpr.2022.03.257.
  • Pradeep, N.; Sundaram, K. S.; Pradeep Kumar, M. Performance Investigation of Variant Polymer Graphite Electrodes Used in Electrochemical Micromachining of ASTM A240 Grade 304. Mater. Manuf. Process. 2020, 35(1), 72–85. DOI: 10.1080/10426914.2019.1697445.
  • Tamilarasan, A.; Renugambal, A.; Vijayan, D. Parametric Estimation for AWJ Cutting of Ti-6al-4V Alloy Using Rat Swarm Optimization Algorithm. Mater. Manuf. Process. 2022, 37(16), 1871–1881. DOI: 10.1080/10426914.2022.2065011.
  • Mirjalili, S.; Saremi, S.; Mirjalili, S. M.; Coelho, L. D. S. Multi-Objective Grey Wolf Optimizer: A Novel Algorithm for Multi-Criterion Optimization. Expert Syst. Appl. 2016, 47, 106–119. DOI: 10.1016/j.eswa.2015.10.039.
  • Das, A. K.; Nikum, A. K.; Krishnan, S. V.; Pratihar, D. K. Multi-Objective Bonobo Optimizer (MOBO): An Intelligent Heuristic for Multi-Criteria Optimization. Knowl. Inf. Syst. 2020, 62(11), 4407–4444. DOI: 10.1007/s10115-020-01503-x.
  • Coello Coello, C. A.; Lechuga, M. S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. Proc. 2002 Congr. Evol. Comput. CEC 2002, 2002, 2, 1051–1056. 10.1109/CEC.2002.1004388.
  • Pratihar, D. K. Soft Computing: Fundamentals and Applications; Narosa Publishing House Pvt. Ltd.: New Delhi, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.