376
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of boric acid in powder mixed EDM of Ti-6al-4V ELI

, &
Pages 130-143 | Received 20 Nov 2022, Accepted 09 Mar 2023, Published online: 30 Mar 2023

References

  • Sivam, S. P.; Michaelraj, A. L.; Kumar, S. S.; Prabhakaran, G.; Dinakaran, D.; Ilankumaran, V. Statistical Multi-Objective Optimization of Electrical Discharge Machining Parameters in Machining Titanium Grade 5 Alloy Using Graphite Electrode. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 228(7), 736–743. DOI: 10.1177/0954405413511073.
  • Machado, A. R.; Wallbank, J. Machining of Titanium and Its Alloys—a Review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 1990, 204(1), 53–60. DOI: 10.1243/PIME_PROC_1990_204_047_02.
  • De Oliveira Campos, F.; Araujo, A. C.; Kapoor, S. G. Experimental Comparison of Micromilling Pure Titanium and Ti–6al–4V. J. Micro Nano-Manufacturing. 2019, 7(2), 2. DOI: https://doi.org/10.1115/1.4043501.
  • Liew, P. J.; Yap, C. Y.; Wang, J.; Zhou, T.; Yan, J. Surface Modification and Functionalization by Electrical Discharge Coating: A Comprehensive Review. Int. J. Extrem. Manuf. 2020, 2(1), 012004. DOI: 10.1088/2631-7990/AB7332.
  • Bermingham, M. J.; Kirsch, J.; Sun, S.; Palanisamy, S.; Dargusch, M. S. New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti-6al-4V. Int. J. Mach. Tools Manuf. 2011, 51(6), 500–511. DOI: 10.1016/J.IJMACHTOOLS.2011.02.009.
  • Karmiris-Obratański, P.; Papazoglou, E. L.; Leszczyńska-Madej, B.; Zagórski, K.; Markopoulos, A. P. Surface and Subsurface Quality of Titanium Grade 23 Machined by Electro Discharge Machining. Mater. 2021, 15(1), 164. DOI: 10.3390/MA15010164.
  • Karmiris-Obratański, P.; Papazoglou, E. L.; Leszczyńska-Madej, B.; Zagórski, K.; Markopoulos, A. P. A Comprehensive Study on Processing Ti–6al–4V ELI with High Power EDM. Mater. (Basel). 2021, 14(2), 303. DOI: 10.3390/ma14020303.
  • Priyadarshini, M.; Pal, K. A Comparative Study for Machining of Ti–6al–4V Alloy for Multi-Criteria Response. J. Adv. Manuf. Syst. 2018, 17(04), 515–531. DOI: 10.1142/S0219686718500294.
  • Sultan, T.; Kumar, A.; Gupta, R. D. Material Removal Rate, Electrode Wear Rate, and Surface Roughness Evaluation in Die Sinking EDM with Hollow Tool Through Response Surface Methodology. Int. J. Manuf. Eng. 2014, 2014, 1–16. DOI: 10.1155/2014/259129.
  • Philip, J. T.; Kumar, D.; Mathew, J.; Kuriachen, B. Experimental Investigations on the Tribological Performance of Electric Discharge Alloyed Ti–6al–4V at 200–600 °c. J. Tribol. 2020, 142(6), 6. DOI: 10.1115/1.4046016.
  • Ramulu, M.; Garbini, J. L. EDM Surface Characterization of a Ceramic Composite TiB2/SiC. J. Eng. Mater. Technol. 1991, 113(4), 437–442. DOI: 10.1115/1.2904123.
  • Sarma, P.; Borah, D. J.; Patowari, P. K.; Likhite, A. Machinability Study of Austempered Ductile Iron Using Die-Sinking EDM. Int. J. Mach. Mach. Mater. 2022, 24(3/4), 314–329. DOI: https://doi.org/10.1504/IJMMM.2022.125201.
  • Patel, K. M.; Pandey, P. M.; Venkateswara Rao, P. Study on Machinability of Al2 O3 Ceramic Composite in EDM Using Response Surface Methodology. J. Eng. Mater. Technol. Trans. ASME. 2011, 133(2), 2. DOI: https://doi.org/10.1115/1.4003100/475355.
  • Gaikwad, M. U.; Krishnamoorthy, A.; Jatti, V. S. Investigation and Optimization of Process Parameters in Electrical Discharge Machining (EDM) Process for NiTi 60. Mater. Res. Express. 2019, 6(6), 065707. DOI: 10.1088/2053-1591/AB08F3.
  • Huang, H.; Zhang, H.; Zhou, L.; Zheng, H. Y. Ultrasonic Vibration Assisted Electro-Discharge Machining of Microholes in Nitinol. J. Micromech. Microeng. 2003, 13(5), 693. DOI: 10.1088/0960-1317/13/5/322.
  • Oelslager, P. J.; Baumgart, H.; Mishra, K. C.; Collins, J.; Wang, P.; Li, J.; Akgün, M. Performance Analysis of Electrode Materials in Electro Discharge Machining of Monel K-500. Surf. Topogr. Metrol. Prop. 2022, 10(3), 035026. DOI: 10.1088/2051-672X/AC8D19.
  • Das, M. K.; Kumar, K.; Barman, T. K.; Sahoo, P. Optimisation of EDM Process Parameters Using Grey-Taguchi Technique. Int. J. Mach. Mach. Mater. 2014, 15(3–4), 235–262. DOI: 10.1504/IJMMM.2014.060553.
  • Dewangan, S.; Biswas, C. K. Optimisation of Machining Parameters Using Grey Relation Analysis for EDM with Impulse Flushing. Int. J. Mechatron. Manuf. Syst. 2013, 6(2), 144–158. DOI: 10.1504/IJMMS.2013.053826.
  • Singh, B.; Kumar, J.; Kumar, S. Investigating the Influence of Process Parameters of ZNC EDM on Machinability of A6061/10% SiC Composite. Adv. Mater. Sci. Eng. 2013, 2013, 1–8. DOI: 10.1155/2013/173427.
  • Sahu, S. N.; Nayak, N. C. Multi-Objective Optimisation of EDM Process Using ANN Integrated with NSGA-II Algorithm. Int. J. Manuf. Technol. Manag. 2018, 32(4–5), 381–395. DOI: 10.1504/IJMTM.2018.093356.
  • Dvivedi, A.; Kumar, P.; Singh, I. Effect of EDM Process Parameters on Surface Quality of Al 6063 SiC P Metal Matrix Composite. Int. J. Mater. Prod. Technol. 2010, 39(3–4), 357–377. DOI: 10.1504/IJMPT.2010.035843.
  • Baroi, B. K.; Jagadish; Patowari, P. K. A Review on Sustainability, Health, and Safety Issues of Electrical Discharge Machining. J. Brazilian Soc. Mech. Sci. Eng. 2022, 44(2), 59. DOI: 10.1007/s40430-021-03351-4.
  • Chung, D. K.; Shin, H. S.; Kim, B. H.; Park, M. S.; Chu, C. N. Surface Finishing of Micro-EDM Holes Using Deionized Water. J. Micromech. Microeng. 2009, 19(4), 045025. DOI: 10.1088/0960-1317/19/4/045025.
  • Kadirvel, A.; Hariharan, P.; Gowri, S. A Review on Various Research Trends in Micro-EDM. Int. J. Mechatron. Manuf. Syst. 2012, 5(5/6), 361. DOI: 10.1504/IJMMS.2012.049968.
  • Abdudeen, A.; Qudeiri, J. E. A.; Kareem, A.; Ahammed, T.; Ziout, A. Recent Advances and Perceptive Insights into Powder-Mixed Dielectric Fluid of EDM. Micromachines. 2020, 11(8), 754. DOI: 10.3390/MI11080754.
  • Srivastava, S.; Vishnoi, M.; Gangadhar, M. T.; Kukshal, V. An Insight on Powder Mixed Electric Discharge Machining: A State of the Art Review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022;095440542211118. DOI: https://doi.org/10.1177/09544054221111896/ASSET/IMAGES/LARGE/10.1177_09544054221111896-FIG9.JPEG.
  • Talla, G.; Gangopadhayay, S.; Biswas, C. K. State of the Art in Powder-Mixed Electric Discharge Machining: A Review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231(14), 2511–2526. DOI: 10.1177/0954405416634265.
  • Oskueyan, S.; Abedini, V.; Hajialimohammadi, A. Effects of Hybrid Al 2 O 3 - SiO 2 Nanoparticles in Deionized Water on the Removal Rate and Surface Roughness During Electrical Discharge Machining of Ti-6al-4V. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236(3), 1122–1133. DOI: 10.1177/09544089211059311.
  • Li, L.; Zhao, L.; Li, Z. Y.; Feng, L.; Bai, X. Surface Characteristics of Ti-6al-4V by SiC Abrasive-Mixed EDM with Magnetic Stirring. Mater. Manuf. Process. 2017, 32(1), 83–86. DOI: 10.1080/10426914.2016.1151043.
  • Prakash, C.; Kansal, H. K.; Pabla, B. S.; Puri, S. Experimental Investigations in Powder Mixed Electric Discharge Machining of Ti–35Nb–7Ta–5Zrβ-Titanium Alloy. Mater. Manuf. Process. 2017, 32(3), 274–285. DOI: 10.1080/10426914.2016.1198018.
  • Umar Farooq, M.; Pervez Mughal, M.; Ahmed, N.; Ahmad Mufti, N.; Al-Ahmari, A. M.; He, Y. On the Investigation of Surface Integrity of Ti6al4v ELI Using Si-Mixed Electric Discharge Machining. Mater. (Basel). 2020, 13(7), 1549. DOI: 10.3390/ma13071549.
  • Öpöz, T. T.; Yaşar, H.; Ekmekci, N.; Ekmekci, B. Particle Migration and Surface Modification on Ti6al4v in SiC Powder Mixed Electrical Discharge Machining. J. Manuf. Process. 2018, 31, 744–758. DOI: 10.1016/J.JMAPRO.2018.01.002.
  • Yaşar, H.; Ekmekci, B. The Effect of Micro and Nano Hydroxyapatite Powder on Biocompatibility and Surface Integrity of Ti6al4v (ELI) in Powder Mixed Electrical Discharge Machining. Surf. Topogr. Metrol. Prop. 2021, 9(1), 015015. DOI: 10.1088/2051-672X/ABDDA2.
  • Ming, W.; Zhang, Z.; Wang, S.; Zhang, Y.; Shen, F.; Zhang, G. Comparative Study of Energy Efficiency and Environmental Impact in Magnetic Field Assisted and Conventional Electrical Discharge Machining. J. Clean. Prod. 2019, 214, 12–28. DOI: 10.1016/J.JCLEPRO.2018.12.231.
  • Hosni, N. A. J.; Lajis, M. A. Experimental Investigation and Economic Analysis of Surfactant (Span-20) in Powder Mixed Electrical Discharge Machining (PMEDM) of AISI D2 Hardened Steel. Mach. Sci. Technol. 2020, 24(3), 398–424. DOI: 10.1080/10910344.2019.1698609.
  • Kung, K. Y.; Horng, J. T.; Chiang, K. T. Material Removal Rate and Electrode Wear Ratio Study on the Powder Mixed Electrical Discharge Machining of Cobalt-Bonded Tungsten Carbide. Int. J. Adv. Manuf. Technol. 2007, 40(1), 95–104. DOI: 10.1007/S00170-007-1307-2.
  • Yang, M.; Zhang, D.; Wu, B.; Zhang, Y. Energy Consumption Modeling for EDM Based on Material Removal Rate. IEEE Access. 2020, 8, 173267–173275. DOI: 10.1109/ACCESS.2020.3024748.
  • Zhang, Z.; Yu, H.; Zhang, Y.; Yang, K.; Li, W.; Chen, Z.; Zhang, G. Analysis and Optimization of Process Energy Consumption and Environmental Impact in Electrical Discharge Machining of Titanium Superalloys. J. Clean. Prod. 2018, 198, 833–846. DOI: 10.1016/J.JCLEPRO.2018.07.053.
  • Jabbaripour, B.; Sadeghi, M. H.; Faridvand, S.; Shabgard, M. R. Investigating the Effects of EDM Parameters on Surface Integrity, MRR and TWR in Machining of Ti–6al–4V. Mach. Sci. Technol. 2012, 16(3), 419–444. DOI: 10.1080/10910344.2012.698971.
  • Ranjith, R.; Prabhakar Bs, M.; Giridharan, P. K.; Ramu, M. Influence of Al 2 0 3 Particle Mixed Dielectric Fluid on Machining Performance of Ti6al4v. Surf. Topogr. Metrol. Prop. 2021, 9(4), 045052. DOI: 10.1088/2051-672X/ac456a.
  • Kolli, M.; Kumar, A. Assessing the Influence of Surfactant and B4C Powder Mixed in Dielectric Fluid on EDM of Titanium Alloy. Silicon. 2019, 11(4), 1731–1743. DOI: 10.1007/s12633-017-9701-3.
  • Kolli, M.; Kumar, A. Effect of Dielectric Fluid with Surfactant and Graphite Powder on Electrical Discharge Machining of Titanium Alloy Using Taguchi Method. Eng. Sci. Technol. Int. J. 2015, 18(4), 524–535. DOI: 10.1016/J.JESTCH.2015.03.009.
  • Kuriachen, B.; Mathew, J. Effect of Powder Mixed Dielectric on Material Removal and Surface Modification in Microelectric Discharge Machining of Ti-6al-4V. Mater. Manuf. Process. 2016, 31(4), 439–446. DOI: 10.1080/10426914.2015.1004705.
  • Batish, A.; Bhattacharya, A.; Kumar, N. Powder Mixed Dielectric: An Approach for Improved Process Performance in EDM. Part. Sci. Technol. 2015, 33(2), 150–158. DOI: 10.1080/02726351.2014.947659.
  • Jabbaripour, B.; Sadeghi, M. H.; Shabgard, M. R.; Faraji, H. Investigating Surface Roughness, Material Removal Rate and Corrosion Resistance in PMEDM of γ-TiAl Intermetallic. J. Manuf. Process. 2013, 15(1), 56–68. DOI: 10.1016/J.JMAPRO.2012.09.016.
  • Majumder, H.; Maity, K. P. Predictive Analysis on Responses in WEDM of Titanium Grade 6 Using General Regression Neural Network (GRNN) and Multiple Regression Analysis (MRA). Silicon. 2018, 10(4), 1763–1776. DOI: 10.1007/S12633-017-9667-1.
  • Majumder, H.; Maity, K. Application of GRNN and Multivariate Hybrid Approach to Predict and Optimize WEDM Responses for Ni-Ti Shape Memory Alloy. Appl. Soft Comput. 2018, 70, 665–679. DOI: 10.1016/J.ASOC.2018.06.026.
  • Kar, S.; Patowari, P. K. Effect of Non-Electrical Parameters in Fabrication of Micro Rod Using BEDG. Mater. Manuf. Process. 2019, 34(11), 1262–1273. DOI: 10.1080/10426914.2019.1643475.
  • Deka, S.; Kar, S.; Patowari, P. K. Machinability of Silicon and German Silver in Micro Electrical Discharge Machining: A Comparative Study. Silicon. 2021, 13(4), 1065–1077. DOI: 10.1007/s12633-020-00496-0.
  • Sahoo, R.; Singh, N. K.; Bajpai, V. A Novel Approach for Modeling MRR in EDM Process Using Utilized Discharge Energy. Mech. Syst. Signal Process. 2023, 185, 109811. DOI: 10.1016/J.YMSSP.2022.109811.
  • Kunieda, M.; Lauwers, B.; Rajurkar, K. P.; Schumacher, B. M. Advancing EDM Through Fundamental Insight into the Process. CIRP Ann. 2005, 54(2), 64–87. DOI: 10.1016/S0007-8506(07)60020-1.
  • Talla, G.; Gangopadhyay, S.; Biswas, C. K. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625. J. Mater. Eng. Perform. 2016, 25(2), 704–717. DOI: 10.1007/s11665-015-1835-0.
  • Kumar, S.; Singh, R.; Batish, A.; Singh, T. P.; Singh, R. Investigating Surface Properties of Cryogenically Treated Titanium Alloys in Powder Mixed Electric Discharge Machining. J. Brazilian Soc. Mech. Sci. Eng. 2017, 39(7), 2635–2648. DOI: 10.1007/s40430-016-0639-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.