199
Views
1
CrossRef citations to date
0
Altmetric
Article

Laser-Directed Energy Deposition of H13: processing window and improved characterization procedures

ORCID Icon, &
Pages 1770-1784 | Received 03 Mar 2023, Accepted 25 May 2023, Published online: 31 May 2023

References

  • Parmar, H.; Khan, T.; Tucci, F.; Umer, R.; Carlone, P. Advanced Robotics and Additive Manufacturing of Composites: Towards a New Era in Industry 4.0. Mater. Manuf. Process. 2022, 2021, 483–517. DOI: 10.1080/10426914.2020.1866195.
  • Shi, Y.; Zhang, Y.; Baek, S.; de Backer, W.; Harik, R. Manufacturability Analysis for Additive Manufacturing Using a Novel Feature Recognition Technique. Comput. Aided Des. Appl. 2018, 15(6), 941–952. DOI: 10.1080/16864360.2018.1462574.
  • Uribe-Lam, E.; Treviño-Quintanilla, C. D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of Additive Manufacturing for the Fabrication of Cellular and Lattice Materials: A Review. Mater. Manuf. Process. 2021, 36(3), 257–280. DOI: 10.1080/10426914.2020.1819544.
  • ASTM International. Additive Manufacturing — General Principles — Fundamentals and vocabulary;ASTM ISO/ASTM 52900-21; West Conshohocken: PA, 2021. DOI:10.1520/F3177-21.
  • Silvestri, A. T.; Amirabdollahian, S.; Perini, M.; Bosetti, P.; Squillace, A. Direct Laser Deposition for Tailored Structure. In ESAFORM 2021, 24th International Conference on Material Forming, 14-16 April, 2021, Liège, Belgique, Liège, Belgique, April 14-16, 2021; Habraken A. M.; 2021, MS13 (Additive Manufacturing). DOI: 10.25518/esaform21.4124.
  • Kumar, P.; Sharma, S. K.; Singh, R. K. R. Recent Trends and Future Outlooks in Manufacturing Methods and Applications of FGM: A Comprehensive Review. Mater. Manuf. Process. 2022, 1–35. DOI:10.1080/10426914.2022.2075892.
  • Borkar, T.; Conteri, R.; Chen, X.; Ramanujan, R. V.; Banerjee, R. Laser Additive Processing of Functionally-Graded Fe–Si–B–Cu–Nb Soft Magnetic Materials. Mater. Manuf. Process. 2017, 32(14), 1581–1587. DOI: 10.1080/10426914.2016.1244849.
  • Yusuf, S. M.; Gao, N. Influence of Energy Density on Metallurgy and Properties in Metal Additive Manufacturing. Mater. Sci. Technol. 2017, 33(11), 1269–1289. United Kingdom. DOI:10.1080/02670836.2017.1289444.
  • Thompson, S. M.; Bian, L.; Shamsaei, N.; Yadollahi, A. An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics. Addit. Manuf. 2015, 8, 36–62. DOI: 10.1016/j.addma.2015.07.001.
  • Sreekanth, S.; Hurtig, K.; Joshi, S.; Andersson, J. Influence of Laser-Directed Energy Deposition Process Parameters and Thermal Post-Treatments on Nb-Rich Secondary Phases in Single-Track Alloy 718 Specimens. J. Laser Appl. 2021, 33(2), 022024. DOI: 10.2351/7.0000259.
  • Shah, K.; Pinkerton, A. J.; Salman, A.; Li, L. Effects of Melt Pool Variables and Process Parameters in Laser Direct Metal Deposition of Aerospace Alloys. Mater. Manuf. Process. 2010, 25(12), 1372–1380. DOI: 10.1080/10426914.2010.480999.
  • Jeong, W.; Kwon, Y. S.; Kim, D. Three-Dimensional Printing of Tungsten Structures by Directed Energy Deposition. Mater. Manuf. Process. 2019, 34(9), 986–992. DOI: 10.1080/10426914.2019.1594253.
  • Bax, B.; Rajput, R.; Kellet, R.; Reisacher, M. Systematic Evaluation of Process Parameter Maps for Laser Cladding and Directed Energy Deposition. Addit. Manuf. 2018, 21(January), 487–494. DOI: 10.1016/j.addma.2018.04.002.
  • Mazzucato, F.; Forni, D.; Valente, A.; Cadoni, E. Laser Metal Deposition of Inconel 718 Alloy and As-Built Mechanical Properties Compared to Casting. Materials. 2021, 14(2), 1–21. DOI: 10.3390/ma14020437.
  • Balu, P.; Leggett, P.; Hamid, S.; Kovacevic, R. Multi-Response Optimization of Laser-Based Powder Deposition of Multi-Track Single Layer Hastelloy C-276. Mater. Manuf. Process. 2013, 28(2), 173–182. DOI: 10.1080/10426914.2012.677908.
  • Silvestri, A. T.; Astarita, A.; Hassanin, A. E.; Manzo, A.; Iannuzzo, U.; Iannuzzo, G.; de Rosa, V.; Acerra, F.; Squillace, A.Assessment of the Mechanical Properties of AlSi10mg Parts Produced Through Selective Laser Melting Under Different ConditionsProcedia Manufacturing, 23rd International Conference on Material Forming, Virtual Conference, May 4-6, 2020In Bambach, M. Elsevier: Amsterdam, The Netherlands, 2020; Vol. 47; pp. 1058–1064. DOI: 10.1016/j.promfg.2020.04.115.
  • Kapil, S.; Legesse, F.; Negi, S.; Karunakaran, K. P.; Bag, S. Hybrid Layered Manufacturing of a Bimetallic Injection Mold of P20 Tool Steel and Mild Steel with Conformal Cooling Channels. Prog. Addit. Manuf. 2020, 5(2), 183–198. DOI: 10.1007/s40964-020-00129-3.
  • Cortina, M.; Arrizubieta, J. I.; Ruiz, J. E.; Ukar, E.; Lamikiz, A. Latest Developments in Industrial Hybrid Machine Tools That Combine Additive and Subtractive Operations. Materials. 2018, 11(12), 2583. DOI: 10.3390/ma11122583.
  • Palčič, I.; Balažic, M.; Milfelner, M.; Buchmeister, B. Potential of Laser Engineered Net Shaping (LENS) Technology. Mater. Manuf. Process. 2009, 24(7–8), 750–753. DOI: 10.1080/10426910902809776.
  • Bennett, J.; Garcia, D.; Kendrick, M.; Hartman, T.; Hyatt, G.; Ehmann, K.; You, F.; Cao, J. Repairing Automotive Dies with Directed Energy Deposition: Industrial Application and Life Cycle Analysis. J. Manuf. Sci. Eng. 2019, 141(2), 1–9. DOI: 10.1115/1.4042078.
  • Mazumder, J.; Choi, J.; Nagarathnam, K.; Koch, J.; Hetzner, D. The Direct Metal Deposition of H13 Tool Steel for 3-D Components. JOM. 1997, 49(5), 55–60. DOI: 10.1007/BF02914687.
  • Zhu, L.; Wang, S.; Pan, H.; Yuan, C.; Chen, X. Research on Remanufacturing Strategy for 45 Steel Gear Using H13 Steel Powder Based on Laser Cladding Technology. J. Manuf. Process. 2020, 49, 344–354. DOI: 10.1016/j.jmapro.2019.12.009.
  • Fonseca, E. B.; Gabriel, A. H. G.; Araújo, L. C.; Santos, P. L. L.; Campo, K. N.; Lopes, E. S. N. Assessment of Laser Power and Scan Speed Influence on Microstructural Features and Consolidation of AISI H13 Tool Steel Processed by Additive Manufacturing. Addit. Manuf. 2020, 34(March), 101250. DOI: 10.1016/j.addma.2020.101250.
  • Wang, M.; Li, W.; Wu, Y.; Li, S.; Cai, C.; Wen, S.; Wei, Q.; Shi, Y.; Ye, F.; Chen, Z. High-Temperature Properties and Microstructural Stability of the AISI H13 Hot-Work Tool Steel Processed by Selective Laser Melting. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 2019, 50(1), 531–542. DOI: 10.1007/s11663-018-1442-1.
  • Vander Voort, G. F. Volume 9: Metallography and Microstructures. ASM Handbook. 2004. DOI: 10.31399/asm.hb.v09.9781627081771.
  • Silvestri, A. T.; Perini, M.; Bosetti, P.; Squillace, A. Exploring Potentialities of Direct Laser Deposition: Thin-Walled Structures. In Key Engineering Materials, 25thInternational Conference on Material Forming, 27-29 April 2022 Braga, Portugal, 2022; Switzerland: Vincze G., Barlat F.; Trans Tech Publications Ltd: 27-29 April 2022, Braga, Portugal, 2022; Vol. 926, pp 206–212. DOI: 10.4028/p-82vyug.
  • ASTM E384 - 17. Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA. Book Of ASTM Standards. 2017. DOI: 10.1520/E0384-17.
  • Costa, L.; Felde, I.; Réti, T.; Kálazi, Z.; Colaço, R.; Vilar, R.; Vero, B. A Simplified Semi-Empirical Method to Select the Processing Parameters for Laser Clad Coatings. In Materials Science Forum, 3rd Hungarian Conference on Materials Science, Testing and Informatics, 14-17 October 2001, Hungary, 2001; Vols. 414–415, pp. 385–394. Switzerland: Gyulai, J., Trans Tech Publications Ltd. DOI: 10.4028/ww.scientific.net/msf.414-415.385.
  • Gong, N.; Meng, T. L.; Cao, J.; Wang, Y.; Karyappa, R.; Ivan Tan, C. K.; Suwardi, A.; Zhu, Q.; Ngo, A. C. Y.; Misra, K. P., et al. Laser-Cladding of High Entropy Alloy Coatings: An Overview. Mater. Technol. 2022, 38, 1–14. DOI: 10.1080/10667857.2022.2151696.
  • Sarathchandra, D. T.; Davidson, M. J.; Visvanathan, G. Parameters Effect on SS304 Beads Deposited by Wire Arc Additive Manufacturing. Mater. Manuf. Process. 2020, 35(7), 852–858. DOI: 10.1080/10426914.2020.1743852.
  • Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids; Oxford: Clarendon Press, 1959.
  • Rosenthal, D. The Theory of Moving Source of Heat and Its Application to Metal Transfer. ASME Transactions. 1946, 68, 849–865. DOI: 10.1115/1.4018624.
  • Chahal, V.; Taylor, R. M. A Review of Geometric Sensitivities in Laser Metal 3D Printing. Virtual Phys. Prototyp. 2020, 15(2), 227–241. DOI: 10.1080/17452759.2019.1709255.
  • Sun, S.; Brandt, M.; Harris, J.; Durandet, Y. The Influence of Stellite 6 Particle Size on the Inter-Track Porosity in Multi-Track Cladding. Surf. Coat. Technol. 2006, 201(3–4), 998–1005. DOI: 10.1016/j.surfcoat.2006.01.008.
  • Paul, C. P.; Bhargava, P.; Kumar, A.; Pathak, A. K.; Kukreja, L. M. Laser Rapid Manufacturing: Technology, Applications, Modeling and Future Prospects. In Lasers in Manufacturing; ISTE Ltd: 2013; pp. 1–67. doi:10.1002/9781118562857.ch1
  • Campanelli, S. L.; Angelastro, A.; Signorile, C. G.; Casalino, G. Investigation on Direct Laser Powder Deposition of 18 Ni (300) Marage Steel Using Mathematical Model and Experimental Characterisation. Int. J. Adv. Manuf. Technol. 2017, 89, 885–895. DOI: 10.1007/s00170-016-9135-x.
  • Ocelík, V.; de Oliveira, U.; de Boer, M.; de Hosson, J. T. M. Thick Co-Based Coating on Cast Iron by Side Laser Cladding: Analysis of Processing Conditions and Coating Properties. Surf. Coat. Technol. 2007, 201(12), 5875–5883. DOI: 10.1016/j.surfcoat.2006.10.044.
  • Dass, A.; Moridi, A. State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design. Coatings. 2019, 9(7), 418. DOI: 10.3390/coatings9070418.
  • Roberts, G.; Krauss, G.; Kennedy, R. Tool Steels. 5th ASM International; 1998. 10.31399/asm.tb.ts5.9781627083584
  • Cottam, R.; Wang, J.; Luzin, V. Characterization of Microstructure and Residual Stress in a 3D H13 Tool Steel Component Produced by Additive Manufacturing. J. Mater. Res. 2014, 29(17), 1978–1986. DOI: 10.1557/jmr.2014.190.
  • Mazumder, J.; Schifferer, A.; Choi, J. Direct Materials Deposition: Designed Macro and Microstructure. Mater. Res. Innov. 1999, 3(3), 118–131. DOI: 10.1007/s100190050137.
  • Park, J. S.; Park, J. H.; Lee, M. G.; Sung, J. H.; Cha, K. J.; Kim, D. H. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process. Metall. Mater. Trans A. 2016, 47(5), 2529–2535. DOI: 10.1007/s11661-016-3427-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.