233
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optimisation of methanol distillation using GA and neural network hybrid

& ORCID Icon
Pages 1911-1921 | Received 11 Dec 2022, Accepted 10 May 2023, Published online: 05 Jun 2023

References

  • Amir Ghoreishi, S.; Nekoui, M. A.; Partovi, S.; Omid Basiri, S. Application of Genetic Algorithm for Solving Multi-Objective Optimization Problems in Robust Control of Distillation Column. Int. J. Adv. Comput. Technol. 2011, 3(1), 32–43. DOI: 10.4156/ijact.vol3.issue1.4.
  • Kockmann, N. History of Distillation; Elsevier Inc: 2014. DOI: 10.1016/B978-0-12-386547-2.00001-6.
  • Moreira, L. C.; Borges, P. O.; Cavalcante, R. M.; Young, A. F. Simulation and Economic Evaluation of Process Alternatives for Biogas Production and Purification from Sugarcane Vinasse. Renew. Sustain. Energy Rev. 2022, 163(April), 112532. DOI: 10.1016/j.rser.2022.112532.
  • Osuolale, F. N.; Zhang, J. Energy Efficiency Optimisation for Distillation Column Using Artificial Neural Network Models. Energy. 2016, 106, 562–578. DOI: 10.1016/j.energy.2016.03.051.
  • Green, J. D. Analytical Applications. Chem. Anal. 1996, 134, 471–533. DOI: 10.1201/9780203027011.ch9.
  • Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable Cement Production-Present and Future. Cem. Concr. Res. 2011, 41(7), 642–650. DOI: 10.1016/j.cemconres.2011.03.019.
  • Górak, A.; Olujić, Ž. Distillation: Fundamentals and Principles. 2014. DOI: 10.1016/C2010-0-66923-9.
  • Kiss, A. A.; Smith, R. Rethinking Energy Use in Distillation Processes for a More Sustainable Chemical Industry. Energy. 2020, 203, 117788. DOI: 10.1016/j.energy.2020.117788.
  • Schack, D.; Jastram, A.; Liesche, G.; Sundmacher, K. Energy-Efficient Distillation Processes by Additional Heat Transfer Derived from the FluxMax Approach. Front. Energy Res. 2020, 8(July), 1–15. DOI: 10.3389/fenrg.2020.00134.
  • Mantravadi, S.; Møller, C. An Overview of Next-Generation Manufacturing Execution Systems: How Important is MES for Industry 4.0? Procedia Manuf. 2019, 30, 588–595. DOI: 10.1016/j.promfg.2019.02.083.
  • Caputo, A. C.; Paolacci, F.; Bursi, O. S.; Giannini, R. Problems and Perspectives in Seismic Quantitative Risk Analysis of Chemical Process Plants. J. Press. Vessel Technol. 2019, 141(1). DOI: 10.1115/1.4040804.
  • Lücking, L. E. Methanol Production from Syngas: Process Modelling and Design Utilising Biomass Gasification and Integrating Hydrogen Supply. Master of Science Thesis, Delft University of Technology, Delft, Netherlands. 2017.
  • Shi, C.; Elgarni, M.; Mahinpey, N. Process Design and Simulation Study: CO2 Utilization Through Mixed Reforming of Methane for Methanol Synthesis. Chem. Eng. Sci. 2021, 233, 116364. DOI: 10.1016/j.ces.2020.116364.
  • Zhang, H.; Wang, S.; Tang, J.; Li, N.; Li, Y.; Cui, P.; Wang, Y.; Zheng, S.; Zhu, Z.; Ma, Y. Multi-Objective Optimization and Control Strategy for Extractive Distillation with Dividing-Wall Column/Pervaporation for Separation of Ternary Azeotropes Based on Mechanism Analysis. Energy. 2021, 229, 120774. DOI: 10.1016/j.energy.2021.120774.
  • Shu, C.; Li, X.; Li, H.; Gao, X. Design and Optimization of Reactive Distillation: A Review. Front. Chem. Sci. Eng. 2022, 16(6), 799–818. DOI: 10.1007/s11705-021-2128-9.
  • Lu, J.; Wang, Q.; Zhang, Z.; Tang, J.; Cui, M.; Chen, X.; Liu, Q.; Fei, Z.; Qiao, X. Surrogate Modeling-Based Multi-Objective Optimization for the Integrated Distillation Processes. Chem. Eng. Process Intensif. 2021, 159, 108224. DOI: 10.1016/j.cep.2020.108224.
  • Chen, Q.; Liu, Q.; Ding, J. An Improved Differential Evolution Algorithm for Operating Optimization of a Distillation Unit. In 2019 Chinese Automation Congress (CAC), Shenyang, China; IEEE, 2019; pp 5277–5282.
  • Sun, S.; Chun, W.; Yang, A.; Shen, W.; Cui, P.; Ren, J. The Separation of Ternary Azeotropic Mixture: Thermodynamic Insight and Improved Multi-Objective Optimization. Energy. 2020, 206, 118117. DOI: 10.1016/j.energy.2020.118117.
  • Park, H.; Kwon, H.; Cho, H.; Kim, J. A Framework for Energy Optimization of Distillation Process Using Machine Learning-Based Predictive Model. Energy Sci. Eng. 2022, 10, 1913–1924. DOI:10.1002/ese3.1134.
  • Yilmaz, C.; Sen, O. Thermoeconomic Analysis and Artificial Neural Network Based Genetic Algorithm Optimization of Geothermal and Solar Energy Assisted Hydrogen and Power Generation. Int. J. Hydrogen. Energy. 2022, 47(xxxx), 16424–16439. DOI: 10.1016/j.ijhydene.2022.03.140.
  • Xu, A.; Li, R.; Chang, H.; Xu, Y.; Li, X.; Lin, G.; Zhao, Y. Artificial Neural Network (ANN) Modeling for the Prediction of Odor Emission Rates from Landfill Working Surface. Waste Manag. 2022, 138(May 2021), 158–171. DOI: 10.1016/j.wasman.2021.11.045.
  • Barakat, T. M.; Fraga, E. S.; Sorensen, E. Multi-Objective Optimisation of Batch Distillation Processes. Comput. Aided Chem. Eng. 2006, 21(C), 955–960. DOI: 10.1016/S1570-7946(06)80169-0.
  • Miriyala, S. S.; Subramanian, V.; Mitra, K. TRANSFORM-ANN for Online Optimization of Complex Industrial Processes: Casting Process as Case Study. Eur. J. Oper. Res. 2018, 264(1), 294–309. DOI: 10.1016/j.ejor.2017.05.026.
  • Chugh, T.; Chakraborti, N.; Sindhya, K.; Jin, Y. A Data-Driven Surrogate-Assisted Evolutionary Algorithm Applied to a Many-Objective Blast Furnace Optimization Problem. Mater. Manuf. Process. 2017, 32(10), 1172–1178. DOI: 10.1080/10426914.2016.1269923.
  • Mahadeva, R.; Kumar, M.; Patole, S. P.; Manik, G. An Optimized PSO-ANN Model for Improved Prediction of Water Treatment Desalination Plant Performance. Water Supply. 2022, 22(3), 2874–2882. DOI: 10.2166/WS.2021.432.
  • Biswas, A.; Maitre, O.; Mondal, D. N.; Das, S. K.; Sen, P. K.; Collet, P.; Chakraborti, N. Data-Driven Multiobjective Analysis of Manganese Leaching from Low Grade Sources Using Genetic Algorithms, Genetic Programming, and Other Allied Strategies. Mater. Manuf. Process. 2011, 26(3), 415–430. DOI: 10.1080/10426914.2010.544809.
  • Miriyala, S. S.; Pujari, K. N. S.; Naik, S.; Mitra, K. Evolutionary Neural Architecture Search for Surrogate Models to Enable Optimization of Industrial Continuous Crystallization Process. Powder Technology. 2022, 405, 117527. DOI: 10.1016/j.powtec.2022.117527.
  • Al-Aghbari, M.; Gujarathi, A. M. Hybrid Optimization Approach Using Evolutionary Neural Network & Genetic Algorithm in a Real-World Waterflood Development. J. Pet. Sci. Eng. 2022, 216(July), 110813. DOI: 10.1016/j.petrol.2022.110813.
  • Dashtbayazi, M. R. Artificial Neural Network-Based Multiobjective Optimization of Mechanical Alloying Process for Synthesizing of Metal Matrix Nanocomposite Powder. Mater. Manuf. Process. 2012, 27(1), 33–42. DOI: 10.1080/10426914.2010.523917.
  • Jha, R.; Pettersson, F.; Dulikravich, G. S.; Saxen, H.; Chakraborti, N. Evolutionary Design of Nickel-Based Superalloys Using Data-Driven Genetic Algorithms and Related Strategies. Mater. Manuf. Process. 2015, 30(4), 488–510. DOI: 10.1080/10426914.2014.984203.
  • Mitra, K. Evolutionary Surrogate Optimization of an Industrial Sintering Process. Mater. Manuf. Process. 2013, 28(7), 768–775. DOI: 10.1080/10426914.2012.736668.
  • Sarkar, D.; Modak, J. M. ANNSA: A Hybrid Artificial Neural Network/Simulated Annealing Algorithm for Optimal Control Problems. Chem. Eng. Sci. 2003, 58(14), 3131–3142. DOI: 10.1016/S0009-2509(03)00168-4.
  • Li, R.; Xu, A.; Zhao, Y.; Chang, H.; Li, X.; Lin, G. Genetic Algorithm (GA) - Artificial Neural Network (ANN) Modeling for the Emission Rates of Toxic Volatile Organic Compounds (VOCs) Emitted from Landfill Working Surface. J. Environ. Manage. January, 2022, 305, 114433. DOI: 10.1016/j.jenvman.2022.114433.
  • Tehlah, N.; Kaewpradit, P.; Mujtaba, I. M. Artificial Neural Network Based Modeling and Optimization of Refined Palm Oil Process. Neurocomputing. 2016, 216, 489–501. DOI: 10.1016/j.neucom.2016.07.050.
  • Streb, A.; Mazzotti, M. Performance Limits of Neural Networks for Optimizing an Adsorption Process for Hydrogen Purification and CO2 Capture. Comput. Chem. Eng. 2022, 166, 107974. DOI: 10.1016/j.compchemeng.2022.107974.
  • Zhang, Y.; Fan, Z.; Jing, G.; Saif, M. M. A. Optimization of Sour Water Stripping Unit Using Artificial Neural Network–Particle Swarm Optimization Algorithm. Processes. 2022, 10(8), 1431. DOI: 10.3390/pr10081431.
  • Unune, D. R.; Nirala, C. K.; Mali, H. S. ANN-NSGA-II Dual Approach for Modeling and Optimization in Abrasive Mixed Electro Discharge Diamond Grinding of Monel K-500. Eng. Sci. Technol. Int. J. 2018, 21(3), 322–329. DOI: 10.1016/j.jestch.2018.04.014.
  • Deb, K.; Mitra, K.; Dewri, R.; Majumdar, S. Towards a Better Understanding of the Epoxy-Polymerization Process Using Multi-Objective Evolutionary Computation. Chem. Eng. Sci. 2004, 59(20), 4261–4277. DOI: 10.1016/j.ces.2004.06.012.
  • Isotupa, J. A Scenario-Based Approach to the Future of Ship-Based Carbon Capture. Master of Science Thesis, Tampere University, Tampere, Finland, 2022.
  • Towler, G.; Sinnott, R. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Elsevier: New York, 2013.
  • Ott, J.; Gronemann, V.; Pontzen, F.; Fiedler, E.; Grossman, G.; Burkhard Kersebohm, K.; Weiss, G.; Witte, C. Methanol - an Industrial Review by Lurgi GmbH, Air Liquide GmbH and BASF AG. Ullmann’s Encycl. Ind. Chem . 2012.
  • Chakrabortty, S.; Nayak, J.; Ruj, B.; Pal, P.; Kumar, R.; Banerjee, S.; Sardar, M.; Chakraborty, P. Photocatalytic Conversion of CO2 to Methanol Using Membrane-Integrated Green Approach: A Review on Capture, Conversion and Purification. J. Environ. Chem. Eng. 2020, 8(4), 103935. DOI: 10.1016/j.jece.2020.103935.
  • Sorin, C.; Gy, R.; Brunchi, C. C.; Kiss, A. A. Optimal Design of Intensified Processes for DME Synthesis. Comput. Chem. Eng. 2017, 105, 142–151. DOI: 10.1016/j.compchemeng.2017.01.004.
  • Zhang, L.; Yang, B.; Zhang, W. Vapor–Liquid Equilibrium of Water + Ethanol + Glycerol: Experimental Measurement and Modeling for Ethanol Dehydration by Extractive Distillation. J. Chem & Eng Data. 2015, 60, 1892–1899. DOI: 10.1021/acs.jced.5b00116.
  • Wang, Y.; Bu, G.; Geng, X.; Zhu, Z.; Cui, P.; Liao, Z. Design Optimization and Operating Pressure Effects in the Separation of Acetonitrile/Methanol/Water Mixture by Ternary Extractive Distillation. J. Clean. Prod. 2019, 218, 212–224. DOI: 10.1016/j.jclepro.2019.01.324.
  • Wilamowski, B. M.; Yu, H. Improved Computation for Levenbergmarquardt Training. IEEE Trans. Neural Networks. 2010, 21(6), 930–937. DOI: 10.1109/TNN.2010.2045657.
  • Sharma, S.; Rangaiah, G. P. Multi-Objective Optimization of a Bio-Diesel Production Process. Fuel. 2013, 103, 269–277. DOI: 10.1016/j.fuel.2012.05.035.
  • Singh, S.; Agrawal, A.; Kodamana, H.; Ramteke, M. Multi-Objective Optimization Based Recursive Feature Elimination for Process Monitoring. Neural Process. Lett. 2021, 53(2), 1081–1099. DOI: 10.1007/s11063-021-10430-z.
  • Roffel, B.; Betlem, B. H. Advanced Practical Process Control, 1st ed. Berlin: Springer-Verlag; 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.