239
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machinability appraisal of nitronic-50 under dry environment using uncoated carbide inserts

&
Pages 506-517 | Received 16 Nov 2022, Accepted 25 May 2023, Published online: 31 May 2023

References

  • Sharma, N.; Gupta, K. Influence of Coated and Uncoated Carbide Tools on Tool Wear and Surface Quality During Dry Machining of Stainless Steel 304. Mater. Res. Exp. 2019, 6(8), 086585. DOI: 10.1088/2053-1591/ab1e59.
  • Verma, V.; Kumar, J.; Singh, A. Optimization of Material Removal Rate and Surface Roughness in Turning of 316 Steel by Using Full Factorial Method. Mater. Today Proc. 2020, 25, 93–798. DOI: 10.1016/j.matpr.2019.09.029.
  • Saketi, S.; Bexell, U.; Östby, J.; Olsson, M. On the Diffusion Wear of Cemented Carbides in the Turning of AISI 316L Stainless Steel. Wear. 2019, 430–431, 202–213. DOI: 10.1016/j.wear.2019.05.010.
  • Guo, W. G.; Nemat-Nasser, S. Flow Stress of Nitronic-50 Stainless Steel Over a Wide Range of Strain Rates and Temperatures. Mech. Mater. 2006, 38(11), 1090–1103. DOI: 10.1016/j.mechmat.2006.01.004.
  • Lang, Y.; Qu, H.; Chen, H.; Weng, Y. Research Progress and Development Tendency of Nitrogen-Alloyed Austenitic Stainless Steels. J. Iron Steel Res. Int. 2015, 22(2), 91–98. DOI: 10.1016/S1006-706X(15)60015-2.
  • Simmons, J. W. Overview: High-Nitrogen Alloying of Stainless Steels. Mater. Sci. Eng. A. 1996, 207(2), 159–169. DOI: 10.1016/0921-5093(95)09991-3.
  • Mertgenç, E. Examination of Wear and Rockwell-C Adhesion Properties of Nitronic 50 Steel Coated with Pack Boriding Method. Sak. Unv. J. Sc. 2020, 24(3), 521–530. DOI: 10.16984/saufenbilder.659782.
  • Rodriguez, D.; Chidambaram, D. Oxidation of Stainless Steel 316 and Nitronic 50 in Supercritical and Ultrasupercritical Water. Appl. Surf. Sci. 2015, 347, 10–16. DOI: 10.1016/j.apsusc.2015.03.127.
  • Li, H.; Chen, W. High Temperature Carburization Behaviour of Mn–Cr–O Spinel Oxides with Varied Concentrations of Manganese. Corros. Sci. 2011, 53(6), 2097–2105. DOI: 10.1016/j.corsci.2011.02.021.
  • Nguyen, T. D.; Zhang, J.; Young, D. J. Effects of Cerium and Manganese on Corrosion of Fe–Cr and Fe–Cr–Ni Alloys in Ar–20CO2 Gas at 818° C. Corros. Sci. 2013, 76, 231–242. DOI: 10.1016/j.corsci.2013.06.046.
  • Karmiol, Z.; Chidambaram, D. Comparison of Performance and Oxidation of Nitronic-50 and Stainless Steel 316 in Subcritical and Supercritical Water Environments. Metall. Mater. Trans A. 2016, 47, 2498–2508. DOI: 10.1007/s11661-016-3368-z.
  • Padhan, S.; Das, A.; Santoshwar, A.; Dharmendrabhai, T.; Das, S. Sustainability Assessment and Machinability Investigation of Austenitic Stainless Steel in Finish Turning with Advanced Ultra-Hard SiAlon Ceramic Tool Under Different Cutting Environments. Silicon. 2021, 13(1), 119–147. DOI: 10.1007/s12633-020-00409-1.
  • Das, A.; Padhan, S.; Das, S.; Alsoufi, M.; Ibrahim, A.; Elsheikh, A. Performance Assessment and Chip Morphology Evaluation of Austenitic Stainless Steel Under Sustainable Machining Conditions. Met. - Open Access Metall. J. 2021, 11(12), 1931. DOI: 10.3390/met11121931.
  • Padhan, S.; Das, S.; Das, A.; Alsoufi, M.; Ibrahim, A.; Elsheikh, A. Machinability Investigation of Nitronic 60 Steel Turning Using SiAlon Ceramic Tools Under Different Cooling/Lubrication Conditions. Mater. 2022, 15(7), 2368. DOI: 10.3390/ma15072368.
  • Balogun, V. A.; Edem, I. F.; Bonney, J.; Ezeugwu, E.; Mativenga, P. T. Effect of Cutting Parameters on Surface Finish When Turning Nitronic 33 Steel Alloy. Int. J. Sci. Eng. Res. 2015, 6(1), 1–9. DOI: Not Available.
  • Balogun, V. A.; Isuamfon, E. F.; Omonigho, B. O. Characterization of Chip and Burr Formation at High Speed Machining of Nitronic 33 Steel Alloy. Int. J. Eng. Res. Africa. 2018, 35, 125–133. DOI: 10.4028/JERA.35.125.
  • Banerjee, A.; Maity, K. An Investigation on Machinability of Nitronic 50 in Dry Environment Using Uncoated WC-Co Tool Inserts. Mater. Today Proc. 2022, 62, 5971–5974. DOI: 10.1016/j.matpr.2022.04.823.
  • Bayraktar, Ş.; Hekimoğlu, A. P. Performance Evaluation of Different Carbide Inserts in Turning of Newly Developed Al‐12Si‐0.1Sr Alloy. Materwiss. Werksttech. 2023, 54(1), 120–128. DOI: 10.1002/mawe.202200148.
  • Kadam, S.; Khake, R.; Mudigonda, S. Experimental Investigations on Surface Roughness, Cutting Forces and Tool Wear in Turning of Super Duplex Stainless Steel with Coated Carbide Inserts. Proc. Int. Manuf. Sci. Eng. C: ASME. 2017, 50732, 1–5. DOI: 10.1115/MSEC2017-3008.
  • Akgün, M. Optimization of Process Parameters Affecting Cutting Force, Power Consumption and Surface Roughness Using Taguchi-Based Gray Relational Analysis in Turning AISI 1040 Steel. Surf. Rev. Lett. 2022, 29(3), 2250029. DOI: 10.1142/S0218625X22500299.
  • Bartarya, G.; Choudhury, S. K. Effect of Cutting Parameters on Cutting Force and Surface Roughness During Finish Hard Turning AISI52100 Grade Steel. Procedia CIRP. 2012, 1, 651–656. DOI: 10.1016/j.procir.2012.05.016.
  • Aneiro, F.; Coelho, R.; Brandão, L. Turning Hardened Steel Using Coated Carbide at High Cutting Speeds. J. Brazilian Soc. Mech. Sci. Eng. 2008, 30(2), 104–109. DOI: 10.1590/S1678-58782008000200002.
  • Waghmode, S.; Dabade, U. Optimization of Process Parameters During Turning of Inconel 625. Mater. Today Proc. 2019, 19, 823–826. DOI: 10.1016/j.matpr.2019.08.138.
  • Ahmed, G. M. S.; Quadri, S. S. H.; Mohiuddin, M. S. Optimization of Feed and Radial Force in Turning Process by Using Taguchi Design Approach. Mater. Today Proc. 2015, 2(4), 3277–3285. DOI: 10.1016/j.matpr.2015.07.141.
  • Manjunatha, R.; Umesh, C. K. Optimization of Tangential Force, Feed Force and Surface Roughness Using Taguchi Technique in Turning Operation. Procedia Mater. Sci. 2014, 5, 1685–1691. DOI: 10.1016/j.mspro.2014.07.357.
  • Jadhav, J. S.; Jadhav, B. R. Experimental Study of Effect of Cutting Parameters on Cutting Force in Turning Process. Int. J. Innov. Res. Adv. Eng. 2014, 1(6), 240–248.
  • Das, A.; Patel, S. K.; Biswal, B. B.; Sahoo, N.; Pradhan, A. Performance Evaluation of Various Cutting Fluids Using MQL Technique in Hard Turning of AISI 4340 Alloy Steel. Measurement. 2019, 150, 107079. DOI: 10.1016/j.measurement.2019.107079.
  • Nur, R.; Noordin, M. Y.; Izman, S.; Kurniawan, D. Machining Parameters Effect in Dry Turning of AISI 316L Stainless Steel Using Coated Carbide Tools. Proc. Inst. Mech. Eng. E J. Process. Mech. Eng. 2017, 231(4), 676–683. DOI: 10.1177/0954408915624861.
  • Mia, M.; Khan, M. A.; Rahman, S. S.; Dhar, N. R. Mono-Objective and Multi-Objective Optimization of Performance Parameters in High Pressure Coolant Assisted Turning of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2017, 90(1), 109–118. DOI: 10.1007/s00170-016-9372-z.
  • Özdemir, M.; Şahinoğlu, A.; Rafighi, M.; Yilmaz, V. Analysis and Optimisation of the Cutting Parameters Based on Machinability Factors in Turning AISI 4140 Steel. Can. Metall. Q. 2022, 61(4), 407–417. DOI: 10.1080/00084433.2022.2058154.
  • Raof, N. A.; Ghani, J.; Junaidi, S.; Haron, C.; Hadi, M. A. Comparison of Dry and Cryogenic Machining on Chip Formation and Coefficient of Friction in Turning AISI 4340 Alloy Steel. Appl. Mech. Mater. 2014, 554, 7–11. DOI: 10.4028/AMM.554.7.
  • Saha, S.; Deb, S.; Bandyopadhyay, P. P. Progressive Wear Based Tool Failure Analysis During Dry and MQL Assisted Sustainable Micro-Milling. Int. J. Mech. Sci. 2021, 212, 106844. DOI: 10.1016/j.ijmecsci.2021.106844.
  • Astakhov, V. P.; Davim, J. P. Tools (Geometry and Material) and Tool Wear. Machining. 2008, 29–57. DOI: 10.1007/978-1-84800-213-5_2.
  • Karnan, B.; Kuppusamy, A.; Latchoumi, T. P.; Banerjee, A.; Sinha, A.; Biswas, A.; Subramanian, A. K. Multi-Response Optimization of Turning Parameters for Cryogenically Treated and Tempered WC–Co Inserts. J. Inst. Eng. (India): D. 2022, 103(1), 263–274. DOI: 10.1007/s40033-021-00321-x.
  • Rao, A. S. Effect of Nose Radius on the Chip Morphology, Cutting Force and Tool Wear During Dry Turning of Inconel 718. Tribol. - Mater. Surf. Interfaces. 2023, 17(1), 1–10. DOI: 10.1080/17515831.2022.2160161.
  • Behera, B. C.; Rao, S.; Ghosh, P. V.; Rao, P. V. Application of Nanofluids During Minimum Quantity Lubrication: A Case Study in Turning Process. Tribol. Int. 2016, 101, 234–246. DOI: 10.1016/j.triboint.2016.04.019.
  • Sahoo, A. K.; Sahoo, S. K.; Pattanayak, S.; Moharana, M. K. Ultrasonic Vibration Assisted Turning of Inconel 825: An Experimental Analysis. Mater. Manuf. Process. 2023, 1–15. DOI: 10.1080/10426914.2023.2165675.
  • Deswal, N.; Kant, R. Experimental Investigation on Magnesium AZ31B Alloy During Ultrasonic Vibration Assisted Turning Process. Mater. Manuf. Process. 2022, 37(15), 1708–1714. DOI: 10.1080/10426914.2022.2039701.
  • Sahoo, A. K.; Sahoo, S. K.; Pattanayak, S.; Moharana, M. K. Experimental Investigation of Ultrasonic Vibration Assisted Turning of Inconel 825 Using TiAln/TiAlcrn Coated WC Cutting Tool Insert. Proc. Inst. Mech. Eng. E J. Process. Mech. Eng. 2022, 1–13. DOI: 10.1177/09544089221139629.
  • Wang, C.; Xie, Y.; Zheng, L.; Qin, Z.; Tang, D.; Song, Y. Research on the Chip Formation Mechanism During the High-Speed Milling of Hardened Steel. Int. J. Mach. Tools Manuf. 2014, 79, 31–48. DOI: 10.1016/j.ijmachtools.2014.01.002.
  • Dong, G.; Zhaopeng, H.; Rongdi, H.; Yanli, C.; Muguthu, J. N. Study of Cutting Deformation in Machining Nickel-Based Alloy Inconel 718. Int. J. Mach. Tools Manuf. 2011, 51(6), 520–527. DOI: 10.1016/j.ijmachtools.2011.02.011.
  • Pawade, R.; Joshi, S. Mechanism of Chip Formation in High-Speed Turning of Inconel 718. Mach. Sci. Technol. 2011, 15(1), 132–152. DOI: 10.1080/10910344.2011.557974.
  • Das, A.; Patel, S. K.; Hotta, T. K.; Biswal, B. B. Statistical Analysis of Different Machining Characteristics of EN-24 Alloy Steel During Dry Hard Turning with Multilayer Coated Cermet Inserts. Measurement. 2019, 134, 123–141. DOI: 10.1016/j.measurement.2018.10.065.
  • Khan, A.; Maity, K. Statistical Modelling and Machinability Assessment of Commercially Pure Titanium (CP-Ti) Grade II: An Experimental Investigation. Measurement. 2019, 137, 664–672. DOI: 10.1016/j.measurement.2019.02.018.
  • Selvaraj, D. P.; Chandramohan, P. Optimization of Surface Roughness of AISI 304 Austenitic Stainless Steel in Dry Turning Operation Using Taguchi Design Method. J. Eng. Sci. Technol. 2010, 5(3), 293–301. DOI: Not Available.
  • Pradhan, S.; Das, S. R.; Jena, P. C.; Dhupal, D. Investigations on Surface Integrity in Hard Turning of Functionally Graded Specimen Under Nano Fluid Assisted Minimum Quantity Lubrication. Adv. Mater. Process. Technol. 2022, 8(S3), 1714–1729. DOI: 10.1080/2374068X.2021.1948706.
  • Mane, S.; Kumar, S. Analysis of Surface Roughness During Turning of AISI 52100 Hardened Alloy Steel Using Minimal Cutting Fluid Application. Adv. Mater. Process. Technol. 2022, 8(S1), 138–149. DOI: 10.1080/2374068X.2020.1855965.
  • Elmunafi, M. H. S.; Mohd Yusof, N.; Kurniawan, D. Effect of Cutting Speed and Feed in Turning Hardened Stainless Steel Using Coated Carbide Cutting Tool Under Minimum Quantity Lubrication Using Castor Oil. Adv. Mech. Eng. 2015, 7(8), 1–7. DOI: 10.1177/1687814015600666.
  • Tanvir, M. H.; Hussain, A.; Rahman, M. T.; Ishraq, S.; Zishan, K.; Rahul, S. T. T.; Habib, M. A. Multi-Objective Optimization of Turning Operation of Stainless Steel Using a Hybrid Whale Optimization Algorithm. J. Manuf. Mater. Process. 2020, 4(3), 64. DOI: 10.3390/jmmp4030064.
  • Elkaseer, A.; Abdelaziz, A.; Saber, M.; Nassef, A. FEM-Based Study of Precision Hard Turning of Stainless Steel 316L. Mater. 2019, 12(16), 2522. DOI: 10.3390/ma12162522.
  • Zerti, A.; Yallese, M. A.; Zerti, O.; Nouioua, M.; Khettabi, R. Prediction of Machining Performance Using RSM and ANN Models in Hard Turning of Martensitic Stainless Steel AISI 420. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2019, 233(13), 4439–4462. DOI: 10.1177/0954406218820557.
  • Lin, C. L. Use of the Taguchi Method and Grey Relational Analysis to Optimize Turning Operations with Multiple Performance Characteristics. Mater. Manuf. Process. 2007, 19(2), 209–220. DOI: 10.1081/AMP-120029852.
  • Mahdavinejad, R. A.; Saeedy, S. Investigation of the Influential Parameters of Machining of AISI 304 Stainless Steel. Sadhana. 2011, 36(6), 963–970. DOI: 10.1007/s12046-011-0055-z.
  • Fernando, R.; Gamage, J.; Karunathilake, H. Sustainable Machining: Environmental Performance Analysis of Turning. Int. J. Sustainable Eng. 2022, 15(1), 15–34. DOI: 10.1080/19397038.2021.1995524.
  • Rajarajan, S.; Ramesh Kannan, C.; Dennison, M. S. A Comparative Study on the Machining Characteristics on Turning AISI 52100 Alloy Steel in Dry and Microlubrication Condition. Aust. J. Mech. Eng. 2020, 20(2), 360–371. DOI: 10.1080/14484846.2019.1710019.
  • Capello, E.; Davoli, P.; Bassanini, G.; Bisi, A. Residual Stresses and Surface Roughness in Turning. J. Eng. Mater. Technol. 1999, 121(3), 346–351. DOI: 10.1115/1.2812385.
  • Bouzid, L.; Yallese, M. A.; Chaoui, K.; Mabrouki, T.; Boulanouar, L. Mathematical Modeling for Turning on AISI 420 Stainless Steel Using Surface Response Methodology. Proc. Inst. Mech. Eng. Pt. B J. Eng. Manufact. 2015, 229(1), 45–61. DOI: 10.1177/0954405414526385.
  • Rafighi, M.; Özdemir, M.; Şahinoğlu, A.; Kumar, R.; Das, S. R. Experimental Assessment and Topsis Optimization of Cutting Force, Surface Roughness, and Sound Intensity in Hard Turning of AISI 52100 Steel. Surf. Rev. Lett. 2022, 29(11), 2250150. DOI: 10.1142/S0218625X22501505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.