211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machinability analysis during finish turning Ti6Al4V with varying cutting edge radius

& ORCID Icon
Pages 144-160 | Received 18 Oct 2022, Accepted 05 Jun 2023, Published online: 19 Jul 2023

References

  • Tan, R.; Zhao, X.; Zhang, S.; Zou, X.; Guo, S.; Hu, Z.; Sun, T. Study on Ultra-Precision Processing of Ti-6Al-4V with Different Ultrasonic Vibration-Assisted Cutting Modes. Mater. Manuf. Processes. 2019, 34(12), 1380–1388. DOI: 10.1080/10426914.2019.1660788.
  • Krishnan, G. P.; S, P.; Samuel Raj, D.; Hussain, S.; Ravi Shankar, V.; Raj, N. Optimization of Jet Position and Investigation of the Effects of Multijet MQCL During End Milling of Ti-6Al-4V. J. Manuf. Processes. 2021, 64(July 2020), 392–408. DOI: 10.1016/j.jmapro.2021.01.038.
  • Umanath, K.; Devika, D.; Rashia Begum, S. Experimental Investigation of Role of Particles Size and Cutting Passes in Abrasive Waterjet Machining Process on Titanium Alloy (Ti–6Al–4V) Using Taguchi’s Method. Mater. Manuf. Processes. 2021, 36(8), 936–949. DOI: 10.1080/10426914.2020.1866202.
  • George, A.; Kuriachen, B.; Dhanish, P. B.; Mathew, J. Experimental Investigations into the Influence of AlSi-10Mg Soft Tool Coating on the Machinability of Ti6Al4V. Mater. Manuf. Processes. 2022, 37(12), 1422–1432. DOI: 10.1080/10426914.2021.1981934.
  • Dhananchezian, M.; Rajkumar, K.; S, P. Cutting Velocity Influenced Machinability of Monel 400 by Coated Tool. Mater. Manuf. Processes. 2022, 38(1), 116–125. DOI: 10.1080/10426914.2022.2105883.
  • Selvakumar, S.; Sreebalaji, V. S.; Ravikumar, K. Machinability Analysis and Optimization in Micro Turning on Tool Wear for Titanium Alloy. Mater. Manuf. Processes. 2021, 36(7), 792–802. DOI: 10.1080/10426914.2020.1866198.
  • Abdellaoui, L.; Khlifi, H.; Bouzid Sai, W.; Hamdi, H. Tool Nose Radius Effects in Turning Process. Mach. Sci. Technol. 2020, 25(1), 1–30. DOI: 10.1080/10910344.2020.1815038.
  • Ahmed, F.; Ko, T. J.; Kurniawan, R.; Kwack, Y. Machinability Analysis of Difficult-To-Cut Material During Ultrasonic Vibration-Assisted Ball End Milling. Mater. Manuf. Processes. 2021, 36(15), 1734–1745. DOI: 10.1080/10426914.2021.1944194.
  • Priarone, P. C.; Rizzuti, S.; Settineri, L.; Vergnano, G. Effects of Cutting Angle, Edge Preparation, and Nano-Structured Coating on Milling Performance of a Gamma Titanium Aluminide. J. Mater. Process. Technol. 2012, 212(12), 2619–2628. DOI: 10.1016/j.jmatprotec.2012.07.021.
  • Denkena, B.; Lucas, A.; Bassett, E. Effects of the Cutting Edge Microgeometry on Tool Wear and Its Thermo-Mechanical Load. CIRP Ann - Manuf. Technol. 2011, 60(1), 73–76. DOI: 10.1016/j.cirp.2011.03.098.
  • Denkena, B.; Koehler, J.; Rehe, M. Influence of the Honed Cutting Edge on Tool Wear and Surface Integrity in Slot Milling of 42CrMo4 Steel. Procedia CIRP. 2012, 1(1), 190–195. DOI: 10.1016/j.procir.2012.04.033.
  • Denkena, B.; Köhler, J.; Breidenstein, B.; Abrão, A. M.; Ventura, C. E. H. Influence of the Cutting Edge Preparation Method on Characteristics and Performance of PVD Coated Carbide Inserts in Hard Turning. Surf. Coat. Technol. 2014, 254, 447–454. DOI: 10.1016/j.surfcoat.2014.07.003.
  • Aurich, J. C.; Zimmermann, M.; Leitz, L. The Preparation of Cutting Edges Using a Marking Laser. Prod. Eng. 2011, 5(1), 17–24. DOI: 10.1007/s11740-010-0275-9.
  • Wang, W.; Biermann, D.; Aßmuth, R.; Arif, A. F. M.; Veldhuis, S. C. Effects on Tool Performance of Cutting Edge Prepared by Pressurized Air Wet Abrasive Jet Machining (PAWAJM). J. Mater. Process. Technol. 2020, 277(October 2019), 116456. DOI: 10.1016/j.jmatprotec.2019.116456.
  • Meyer, R.; Köhler, J.; Denkena, B. Influence of the Tool Corner Radius on the Tool Wear and Process Forces During Hard Turning. Int. J. Adv. Manuf. Technol. 2012, 58(9–12), 933–940. DOI: 10.1007/s00170-011-3451-y.
  • Ventura, C. E. H.; Chaves, H. S.; Campos Rubio, J. C.; Abrão, A. M.; Denkena, B.; Breidenstein, B. The Influence of the Cutting Tool Microgeometry on the Machinability of Hardened AISI 4140 Steel. Int. J. Adv. Manuf. Technol. 2017, 90(9–12), 2557–2565. DOI: 10.1007/s00170-016-9582-4.
  • Thiele, J. D.; Melkote, S. N. Effect of Cutting Edge Geometry and Workpiece Hardness on Surface Generation in the Finish Hard Turning of AISI 52100 Steel. J. Mater. Process. Technol. 1999, 94(2), 216–226. DOI: 10.1016/S0924-0136(99)00111-9.
  • Zhao, T.; Zhou, J. M.; Bushlya, V.; Ståhl, J. E. Effect of Cutting Edge Radius on Surface Roughness and Tool Wear in Hard Turning of AISI 52100 Steel. Int. J. Adv. Manuf. Technol. 2017, 91(9–12), 3611–3618. DOI: 10.1007/s00170-017-0065-z.
  • Pawade, R. S.; Joshi, S. S. Mechanism of Chip Formation in High-Speed Turning of Inconel 718. Mach. Sci. Technol. 2011, 15(1), 132–152. DOI: 10.1080/10910344.2011.557974.
  • Li, B.; Zhang, S.; Yan, Z.; Zhang, J. Effect of Edge Hone Radius on Chip Formation and Its Microstructural Characterization in Hard Milling of AISI H13 Steel. Int. J. Adv. Manuf. Technol. 2018, 97(1–4), 305–318. DOI: 10.1007/s00170-018-1933-x.
  • Woon, K. S.; Rahman, M.; Fang, F. Z.; Neo, K. S.; Liu, K. Investigations of Tool Edge Radius Effect in Micromachining: A FEM Simulation Approach. J. Mater. Process. Technol. 2008, 195(1–3), 204–211. DOI: 10.1016/j.jmatprotec.2007.04.137.
  • Joyson Selvakumar, S.; Sakthivel, P.; Praveen, J. A.; Samuel Raj, D. Effect of Edge Radius on Forces, Tool Wear and Surface Integrity Under Edge Radius Dominated Tool-Chip Contact Conditions. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2023. DOI: 10.1177/09544054221147643.
  • Jafarian, F.; Umbrello, D.; Jabbaripour, B. Identification of New Material Model for Machining Simulation of Inconel 718 Alloy and the Effect of Tool Edge Geometry on Microstructure Changes. Simul. Model Pract. Theory. 2016, 66, 273–284. DOI: 10.1016/j.simpat.2016.05.001.
  • Arisoy, Y. M.; Özel, T. Prediction of Machining Induced Microstructure in Ti-6Al-4V Alloy Using 3-D FE-Based Simulations: Effects of Tool Micro-Geometry, Coating and Cutting Conditions. J. Mater. Process. Technol. 2015, 220, 1–26. DOI: 10.1016/j.jmatprotec.2014.11.002.
  • Bajpai, V.; Lee, I.; Park, H. W. Finite Element Modeling of Three-Dimensional Milling Process of Ti-6Al-4V. Mater. Manuf. Processes. 2014, 29(5), 564–571. DOI: 10.1080/10426914.2014.892618.
  • Ozel, T.; Llanos, I.; Soriano, J.; Arrazola, P. J. 3d Finite Element Modelling of Chip Formation Process for Machining Inconel 718: Comparison of FE Software Predictions. Mach. Sci. Technol. 2011, 15(1), 21–46. DOI: 10.1080/10910344.2011.557950.
  • Khajehzadeh, M.; Razfar, M. R. FEM and Experimental Investigation of Cutting Force During UAT Using Multicoated Inserts. Mater. Manuf. Processes. 2015, 30(7), 858–867. DOI: 10.1080/10426914.2014.973590.
  • Gao, C.; Zhang, L. Effect of Cutting Conditions on the Serrated Chip Formation in High-Speed Cutting. Mach. Sci. Technol. 2013, 17(1), 26–40. DOI: 10.1080/10910344.2012.747887.
  • Wang, B. S.; Zuo, J. M.; Wang, M. L.; Hou, J. M. Prediction of Milling Force Based on Numerical Simulation of Oblique Cutting. Mater. Manuf. Processes. 2012, 27(10), 1011–1016. DOI: 10.1080/10426914.2011.654150.
  • Magalhães, F. C.; Ventura, C. E. H.; Abrão, A. M.; Denkena, B. Experimental and Numerical Analysis of Hard Turning with Multi-Chamfered Cutting Edges. J. Manuf. Processes. 2020, 49(February 2019), 126–134. DOI: 10.1016/j.jmapro.2019.11.025.
  • Karpat, Y.; Özel, T. Process Simulations for 3D Turning Using Uniform and Variable Microgeometry PCBN Tools. Int. J. Mach. Mach. Mater. 2008, 4(1), 26–38. DOI: 10.1504/IJMMM.2008.020908.
  • Özel, T. Computational Modelling of 3D Turning: Influence of Edge Micro-Geometry on Forces, Stresses, Friction and Tool Wear in PcBn Tooling. J. Mater. Process. Technol. 2009, 209(11), 5167–5177. DOI: 10.1016/j.jmatprotec.2009.03.002.
  • Thepsonthi, T.; Özel, T. 3-D Finite Element Process Simulation of Micro-End Milling Ti-6Al-4V Titanium Alloy: Experimental Validations on Chip Flow and Tool Wear. J. Mater. Process. Technol. 2015, 221, 128–145. DOI: 10.1016/j.jmatprotec.2015.02.019.
  • Li, A.; Zang, J.; Zhao, J. Effect of Cutting Parameters and Tool Rake Angle on the Chip Formation and Adiabatic Shear Characteristics in Machining Ti-6Al-4V Titanium Alloy. Int. J. Adv. Manuf. Technol. 2020, 107(7–8), 3077–3091. DOI: 10.1007/s00170-020-05145-9.
  • Nie, G.-C.; Zhang, X.-M.; Yang, Z.-Y.; Zhang, D.; Outeiro, J.; Liu, H.-G.; Ding, H. Effects of Cutting Edge Radius on Surface Integrity in Machining of Nickel-Based Cast Superalloy: An in situ Imaging Approach. J. Manuf. Sci. Eng. 2022, 144(12), 1–10. DOI: 10.1115/1.4055148.
  • Venkatachalam, S.; Liang, S. Y. Effects of Ploughing Forces and Friction Coefficient in Microscale Machining. J. Manuf. Sci. Eng. 2007, 129(2), 274–280. DOI: 10.1115/1.2673449.
  • Ming, W.; Dang, J.; An, Q.; Chen, M. Chip Formation and Hole Quality in Dry Drilling Additive Manufactured Ti6Al4V. Mater. Manuf. Processes. 2020, 35(1), 43–51. DOI: 10.1080/10426914.2019.1692353.
  • Fang, N. Kinematic Characterization of Chip Lateral-Curl—the Third Pattern of Chip Curl in Machining. J. Manuf. Sci. Eng. 2002, 124(3), 667. DOI: 10.1115/1.1468225.
  • Kiyak, M.; Altan, M.; Altan, E. Prediction of Chip Flow Angle in Orthogonal Turning of Mild Steel by Neural Network Approach. Int. J. Adv. Manuf. Technol. 2007, 33(3–4), 251–259. DOI: 10.1007/s00170-006-0460-3.
  • Wang, X.; Jawahir, I. S. Recent Advances in Plasticity Applications in Metal Machining: Slip-Line Models for Machining with Rounded Cutting Edge Restricted Contact Grooved Tools. Int. J. Mach. Mach. Mater. 2007, 2(3–4), 347–360. DOI: 10.1504/ijmmm.2007.015471.
  • Bernard, S. E.; Selvaganesh, R.; Khoshick, G.; Samuel Raj, D. A Novel Contact Area Based Analysis to Study the Thermo-Mechanical Effect of Cutting Edge Radius Using Numerical and Multi-Sensor Experimental Investigation in Turning. J. Mater. Process. Technol. 2021, 293(February), 117085. DOI: 10.1016/j.jmatprotec.2021.117085.
  • Gerami, M.; Farahnakian, M.; Elhami Joosheghan, S. Effect of Grooving Textured Tool on the Titanium Chip Morphology. Mater. Manuf. Processes. 2022, 37(9), 1013–1021. DOI: 10.1080/10426914.2021.2001515.
  • Yu, W.; Li, Y.; Chen, J.; Zuo, Z.; Chen, D.; An, Q.; Chen, M.; Wang, H. Experimental Study on Chip Formation and Surface Quality in Milling of TiB 2/Al Alloy Composites. Mater. Manuf. Processes. 2020, 35(15), 1671–1679. DOI: 10.1080/10426914.2020.1779937.
  • Hariprasad, B.; Selvakumar, S. J.; Samuel Raj, D. Effect of Cutting Edge Radius on End Milling Ti–6Al–4V Under Minimum Quantity Cooling Lubrication – Chip Morphology and Surface Integrity Study. Wear. 2022, 498–499(August 2021), 204307. DOI: 10.1016/j.wear.2022.204307.
  • Joshi, S.; Tewari, A.; Joshi, S. Influence of Preheating on Chip Segmentation and Microstructure in Orthogonal Machining of Ti6Al4V. J. Manuf. Sci. Eng. Trans. ASME. 2013, 135(6), 1–11. DOI: 10.1115/1.4025741.
  • Li, B.; Zhang, S.; Fang, Y. Effect of Edge Hone Radius on Plowing-Induced Plastic Deformation in Hard Milling: Analytical Modeling and Experimental Validation. Int. J. Adv. Manuf. Technol. 2019, 105(7–8), 3017–3029. DOI: 10.1007/s00170-019-04491-7.
  • Kountanya, R.; Al-Zkeri, I.; Altan, T. Effect of Tool Edge Geometry and Cutting Conditions on Experimental and Simulated Chip Morphology in Orthogonal Hard Turning of 100Cr6 Steel. J. Mater. Process. Technol. 2009, 209(11), 5068–5076. DOI: 10.1016/j.jmatprotec.2009.02.011.
  • Yen, Y. C.; Jain, A.; Altan, T. A Finite Element Analysis of Orthogonal Machining Using Different Tool Edge Geometries. J. Mater. Process. Technol. 2004, 146(1), 72–81. DOI: 10.1016/S0924-0136(03)00846-X.
  • Bouzakis, K. D.; Michailidis, N.; Skordaris, G.; Kombogiannis, S.; Hadjiyiannis, S.; Efstathiou, K.; Pavlidou, E.; Erkens, G.; Rambadt, S.; Wirth, I. Optimisatioin of the Cutting Edge Roundness and Its Manufacturing Procedures of Cemented Carbide Inserts, to Improve Their Milling Performance After a PVD Coating Deposition. Surf. Coat. Technol. 2003, 163–164, 625–630. DOI: 10.1016/S0257-8972(02)00687-4.
  • Fang, N.; Wu, Q. The Effects of Chamfered and Honed Tool Edge Geometry in Machining of Three Aluminum Alloys. Int. J. Mach. Tools Manuf. 2005, 45(10), 1178–1187. DOI: 10.1016/j.ijmachtools.2004.12.003.
  • Liu, Y.; Hrechuk, A.; Agmell, M.; Ahadi, A.; Stahl, J. E.; Zhou, J. FE Analysis on the Association Between Tool Edge Radius and Thermal-Mechanical Load in Machining Inconel 718. Procedia CIRP. 2021, 102, 91–96. DOI: 10.1016/j.procir.2021.09.016.
  • Sahu, T. S.; George, A.; Kuriachen, B.; Mathew, J.; Dhanish, P. B. Experimental Investigations on the Wear Behaviour of Micro-EDM-Fabricated Textured Tools During Dry Turning of Ti6Al4V. Ind. Lubrication Tribol. 2022, 74(1), 26–33. DOI: 10.1108/ILT-06-2021-0233.
  • Zhuang, K.; Gao, J.; Ye, T.; Dai, X. Effect of Cutting Edge Radius on Cutting Force and Surface Roughness in Machining of Ti-6Al-4V. Procedia CIRP. 2022, 108(C), 571–576. DOI: 10.1016/j.procir.2022.03.090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.