156
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigations on electro erosion milling of Al-SiC metal-matrix composite

ORCID Icon, , &
Pages 480-493 | Received 16 Feb 2023, Accepted 19 Jun 2023, Published online: 19 Jul 2023

References

  • Mohan, B.; Rajadurai, A.; Satyanarayana, K. G. Electric Discharge Machining of Al-SiC Metal Matrix Composites Using Rotary Tube Electrode. J. Mater. Process. Technol. 2004, 153–154(1–3), 978–985. DOI: 10.1016/j.jmatprotec.2004.04.347.
  • Singh, N. K.; Prasad, R.; Johari, D. Electrical Discharge Drilling of Al-Sic Composite Using Air Assisted Rotary Tubular Electrode. Mater. Today Proc. 2018, 5(11), 23769–23778. DOI: 10.1016/j.matpr.2018.10.168.
  • Mullya, S. A.; Karthikeyan, G.; Ganachari, V. S. Electric Discharge Milling: A State-Of-The-Art Review. J. Brazilian Soc. Mech. Sci. Eng. 2021, 43(9), 1–22. DOI: 10.1007/s40430-021-03146-7.
  • Siva, M.; Arunkumar, N.; Subramanian, M.; Elakkiyadasan, R. Influence of Micro-Electrical Discharge Machining Parameters on the Surface Morphology of the Nickel-Coated Electrode. Mater. Manuf. Process. 2022, 1–16. DOI: 10.1080/10426914.2022.2105869.
  • Pant, P.; Bharti, P. S. Experimental Investigation on Micro-Electrical Discharge Machining Process for Heat Treated Nickel-Based Nimonic 80A. Mater. Manuf. Process. 2022, 1–12. DOI: 10.1080/10426914.2022.2105889.
  • Kumar, R.; Yadav, V.; Rawal, L.; Kulshrestha, U. Analysis of Over Cut in Electrical Discharge Machining of Nickel-Based Alloy Using Taguchi Approach. Mater. Manuf. Process. 2022, 1–9. DOI: 10.1080/10426914.2022.2105887.
  • Singh, M.; Jain, V. K.; Ramkumar, J. 3-D Fabrication Using Electrical Discharge-Milling: An Overview. Mater. Manuf. Process. 2022, 37(11), 1215–1245. DOI: 10.1080/10426914.2022.2072888.
  • Jafferson, J. M.; Hariharan, P.; Ram Kumar, J. Effects of Ultrasonic Vibration and Magnetic Field in Micro-EDM Milling of Nonmagnetic Material. Mater. Manuf. Process. 2014, 29(3), 357–363. DOI: 10.1080/10426914.2013.872268.
  • Liu, K.; Lauwers, B.; Reynaerts, D. Process Capabilities of Micro-EDM and Its Applications. Int. J. Adv. Manuf. Technol. 2010, 47(1–4), 11–19. DOI: 10.1007/s00170-009-2056-1.
  • Kunieda, M.; Miyoshi, Y.; Takaya, T.; Nakajima, N.; Bo, Y. Z.; Yoshida, M. High Speed 3D Milling by Dry EDM. CIRP Ann. - Manuf. Technol. 2003, 52(1), 147–150. DOI: 10.1016/s0007-8506(07)60552-6.
  • Li, Y.; Deng, J.; Chai, Y.; Fan, W. Surface Textures on Cemented Carbide Cutting Tools by Micro EDM Assisted with High-Frequency Vibration. Int. J. Adv. Manuf. Technol. 2016, 82(9–12), 2157–2165. DOI: 10.1007/s00170-015-7544-x.
  • Kliuev, M.; Kutin, A.; Wegener, K. Electrode Wear Pattern During EDM Milling of Inconel 718. Int. J. Adv. Manuf. Technol. 2021, 117(7–8), 2369–2375. DOI: 10.1007/s00170-021-07327-5.
  • Vijayakumar, R.; Srirangarajalu, N.; Santhanakumar, M.; Adalarasan, R. Investigation in Μ-WEDM of Inconel 625 Superalloy Using RSM-CCD Technique. Mater. Manuf. Process. 2022, 1–12. DOI: 10.1080/10426914.2022.2116035.
  • Quarto, M.; Bissacco, G.; D’Urso, G. Machinability and Energy Efficiency in Micro-EDM Milling of Zirconium Boride Reinforced with Silicon Carbide Fibers. Mater. (Basel). 2019, 12(23), 3920. DOI: 10.3390/ma12233920.
  • Huang, C. H.; Yang, A. B.; Hsu, C. Y. The Optimization of Micro EDM Milling of Ti–6Al–4V Using a Grey Taguchi Method and Its Improvement by Electrode Coating. Int. J. Adv. Manuf. Technol. 2018, 96(9–12), 3851–3859. DOI: 10.1007/s00170-018-1841-0.
  • Lin, M. M.-Y.; Tsao, C.-C.-C.; Hsu, C.-Y. C.; Chiou, A.; Huang, P.-C. P.; Lin, Y. Optimization of Micro Milling Electrical Discharge Machining of Inconel 718 by Grey-Taguchi Method. Trans. Nonferrous Met. Soc. China (English Ed). 2013, 23(3), 661–666. DOI: 10.1016/S1003-6326(13)62513-3.
  • Gong, X. P.; Yang, T. Y.; Bai, X.; Li, L.; Jiang, G. F. Experimental Research on EDM-Milling of Sintered NdFeb. Int. J. Adv. Manuf. Technol. 2022, 121(3–4), 2415–2425. DOI: 10.1007/s00170-022-09368-w.
  • D’Urso, G.; Giardini, C.; Quarto, M. Characterization of Surfaces Obtained by Micro-EDM Milling on Steel and Ceramic Components. Int. J. Adv. Manuf. Technol. 2018, 97(5–8), 2077–2085. DOI: 10.1007/s00170-018-1962-5.
  • D’Urso, G.; Giardini, C.; Lorenzi, S.; Quarto, M.; Sciti, D.; Silvestroni, L. Micro-EDM Milling of Zirconium Carbide Ceramics. Precis. Eng. 2020, 65(August 2019), 156–163. DOI: 10.1016/j.precisioneng.2020.06.002.
  • Schubert, A.; Zeidler, H.; Hahn, M.; Hackert-Oschätzchen, M.; Schneider, J. Micro-EDM Milling of Electrically Nonconducting Zirconia Ceramics. Procedia CIRP. 2013, 6, 297–302. DOI: 10.1016/j.procir.2013.03.026.
  • Marrocco, V.; Modica, F.; Bellantone, V.; Medri, V.; Fassi, I. Pulse-Type Influence on the Micro-Edm Milling Machinability of Si3N4–TiN Workpieces. Micromachines. 2020, 11(10), 932. DOI: 10.3390/mi11100932.
  • Bissacco, G.; Valentincic, J.; Hansen, H. N.; Wiwe, B. D. Towards the Effective Tool Wear Control in Micro-EDM Milling. Int. J. Adv. Manuf. Technol. 2010, 47(1–4), 3–9. DOI: 10.1007/s00170-009-2057-0.
  • Fujiki, M.; Ni, J.; Shih, A. J. Investigation of the Effects of Electrode Orientation and Fluid Flow Rate in Near-Dry EDM Milling. Int. J. Mach. Tools Manuf. 2009, 49(10), 749–758. DOI: 10.1016/j.ijmachtools.2009.05.003.
  • Nguyen, M. D.; Wong, Y. S.; Rahman, M. Profile Error Compensation in High Precision 3D Micro-EDM Milling. Precis. Eng. 2013, 37(2), 399–407. DOI: 10.1016/j.precisioneng.2012.11.002.
  • Li, L.; Hao, J.; Deng, Y.; Wang, H. Study of Dry EDM Milling Integrated with Electrode Wear Compensation and Finishing. Mater. Manuf. Process. 2013, 28(4), 403–407. DOI: 10.1080/10426914.2013.763969.
  • Chiou, A. H.; Tsao, C. C.; Hsu, C. Y. A Study of the Machining Characteristics of Micro EDM Milling and Its Improvement by Electrode Coating. Int. J. Adv. Manuf. Technol. 2015, 78(9–12), 1857–1864. DOI: 10.1007/s00170-014-6778-3.
  • Ucun, İ.; Aslantasx, K.; Bedir, F. The Effect of Minimum Quantity Lubrication and Cryogenic Pre-Cooling on Cutting Performance in the Micro Milling of Inconel 718. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229(12), 2134–2143. DOI: 10.1177/0954405414546144.
  • Xu, B.; Feng, T.; Xiao, Y. C.; Wu, X. Y.; Fu, L. Y.; Zhao, H.; Lei, J. G.; Zhao, C. Micro-EDM of Micro-Stepped Hole in YG8 Cemented Carbide by Using Micro Milling Cutter. Int. J. Adv. Manuf. Technol. 2022, 121(1–2), 1015–1026. yang. DOI:10.1007/s00170-022-09268-z.
  • Arun Pillai, K. V.; Hariharan, P. Surface Characteristics and Recast Layer Thickness Analysis of Μed Machined Inconel 718 Alloy with Biodiesels. Mater. Manuf. Process. 2022, 1–11. DOI: 10.1080/10426914.2022.2105870.
  • Lenin, N.; Sivakumar, M.; Selvakumar, G.; Rajamani, D.; Sivalingam, V.; Gupta, M. K.; Mikolajczyk, T.; Pimenov, D. Y. Optimization of Process Control Parameters for WEDM of Al-LM25/Fly Ash/B4C Hybrid Composites Using Evolutionary Algorithms: A Comparative Study. Met. 2021, 11(7), 1105. DOI: 10.3390/MET11071105.
  • Rao, R. V. Single- and Multi-Objective Optimization of Traditional and Modern Machining Processes Using Jaya Algorithm and Its Variants. In Jaya: An Advanced Optimization Algorithm and Its Engineering Applications; Springer International Publishing AG: 2018; pp. 181–255. DOI: 10.1007/978-3-319-78922-4_7.
  • Rao, R. V.; Rai, D. P.; Balic, J. Surface Grinding Process Optimization Using Jaya Algorithm. In Computational Intelligence and Data Mining; S, B. H. P, M. D., Eds.; 2016; Vol. 2, pp. 487–495. DOI: 10.1007/978-81-322-2731-1_46.
  • Rao, R. V.; Rai, D. P. Multi-Objective Optimization of Abrasive Waterjet Machining Process Using Jaya Algorithm and PROMETHEE Method. J. Intell. Manuf. 2017, 30(5), 2101–2127. DOI: 10.1007/s10845-017-1373-8.
  • Rao, R. V.; Rai, D.; Ramkumar, J.; Balic, J. A New Multi ‐ Objective Jaya Algorithm for Optimization of Modern Machining Processes. Adv. Prod. Eng. Manag. 2016, 11(4), 271–286. DOI: 10.14743/apem2016.4.226.
  • Skoczypiec, S.; Bizoń, W.; Podolak-Lejtas, A. Selected Aspects of Electrodischarge Milling of Aluminum Alloy-Based Metal Matrix Composite with SiC Reinforcement. Procedia Manuf. 2020, 47(2019), 795–798. DOI: 10.1016/j.promfg.2020.04.244.
  • Skoczypiec, S.; Ruszaj, A. A Sequential Electrochemical-Electrodischarge Process for Micropart Manufacturing. Precis. Eng. 2014, 38(3), 680–690. DOI: 10.1016/j.precisioneng.2014.03.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.