143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hot profiled rolling of C40 steel: production variable’s effect on rolling performance

&
Pages 871-891 | Received 20 Apr 2023, Accepted 30 May 2023, Published online: 28 Jul 2023

References

  • Lang, J. Roman Iron and Steel: A Review. Mat. And Mfg. Pro. 2017, 32(7–8), 857–866. doi: 10.1080/10426914.2017.1279326.
  • Qichao, J.; Wang, W.; Yan, W.; Jiang, R. Springback and Forward Slip Compensation in Designing Roller Cavity Surfaces for Net-Shape Rolling Compressor Blades. Mat. And Mfg. Pro. 2017, 32(12), 1442–1449. doi: 10.1080/10426914.2017.1317796.
  • Buchmayr, B. Thermomechanical Treatment of Steels - a Real Disruptive Technology Since Decades. Steel Res. Int. 2017, 88(10), 1700182. doi: 10.1002/srin.201700182.
  • Deng, J.; Mao, H. A Blank Optimization Design Method for Three-Roll Cross Rolling of Complex-Groove and Small-Hole Ring. Int. J. Of Mech. Sci. 2015, 93, 218–228. doi: 10.1016/j.ijmecsci.2014.10.024.
  • Yao, S. J.; Liu, H. T.; Sun, L.; Cai, M. H. Combined Effects of High-Temperature Rolling and Ultrafast Cooling on the Mechanical Properties of Low-Carbon Steel. Mat. And Mfg. Pro. 2016, 32(12), 1331–1335. doi: 10.1080/10426914.2016.1221100.
  • Winiarski, G.; Dziubińska, A. Analysis of a New Process of Forging a 2017A Aluminum Alloy Connecting Rod. J. Mfg. Sc. Engg. 2021, 143(8). doi: 10.1115/1.4050185.
  • Pandre, S.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Influence of Processing Temperature on Formability of Thin-Rolled DP590 Steel Sheet. Mat. And Mfg. Pro. 2020, 35(8), 901–909. doi: 10.1080/10426914.2020.1743854.
  • Guo, W.; Yi, Y.; Huang, S.; Mao, X.; Fang, J.; Tong, D.; Luan, Y. Manufacturing Large 2219 Al–Cu Alloy Rings by a Cold Rolling Process. Mat. And Mfg. Pro. 2020, 35(3), 291–302. doi: 10.1080/10426914.2020.1718696.
  • Yogesha, K. K.; Joshi, A.; Kumar, N.; Jayaganthan, R. Effect of Cryo Groove Rolling Followed by Warm Rolling (CGW) on the Mechanical Properties of 5052 Al Alloy. Mat. And Mfg. Pro. 2016, 32(12), 1336–1344. doi: 10.1080/10426914.2016.1244845.
  • Kovačič, M.; Šarler, B. Genetic Algorithm-Based Batch Filling Scheduling in the Steel Industry. Mat. And Mfg. Pro. 2011, 26(3), 464–474. doi: 10.1080/10426914.2010.525576.
  • Miao, H.; Wang, A.; Chang, T.-S.; Shi, J. A Product-Oriented Synchronization and Effective Information Extraction of Continuous Streaming Data for Relationship Mining in a Hot Rolling Process. J. Mfg. Sci. Engg. 2022, 144, 8. doi: 10.1115/1.4053860.
  • Nalawade, R. S.; Puranik, A. J.; Balachandran, G.; Mahadik, K. N.; Balasubramanian, V. Simulation of Hot Rolling Deformation at Intermediate Passes and Its Industrial Validity. Int. J. Of Mech. Sci. 2013, 77, 8–16. doi: 10.1016/j.ijmecsci.2013.09.017.
  • Filipović, M.; Eriksson, C.; Överstam, H. Behaviour of Surface Defects in Wire Rod Rolling. Steel Res. Int. 2006, 77(6), 439–444. doi: 10.1002/srin.200606411.
  • Hwang, J. K. Effect of Elongation of a Rod on Strain Inhomogeneity and Shape Change During the Compression-Type Forming Process. J. Mfg. Sc. Engg. 2023, 145(3), 031005. doi: 10.1115/1.4056071.
  • Sung, J. U.; Na, D. H.; Lee, Y. A Study on Design Equation of Separating and Oval Roll Grooves in Rebar Manufacturing Process. Mat. And Mfg. Pro. 2014, 29(2), 100–106. doi: 10.1080/10426914.2013.811742.
  • Ackermann, M.; Resiak, B.; Buessler, P.; Michaut, B.; Hell, J.-C.; Richter, S.; Gibson, J. L.; Bleck, W. Methods to Classify Bainite in Wire Rod Steel. Steel Res. Int. 2021, 92(1), 2000454–2000454. doi: 10.1002/srin.202000454.
  • Nandan, R.; Rai, R.; Jayakanth, R.; Moitra, S.; Chakraborti, N.; Mukhopadhyay, A. Regulating Crown and Flatness During Hot Rolling: A Multiobjective Optimization Study Using Genetic Algorithms. Mat. And Mfg. Pro. 2005, 20(3), 459–478. doi: 10.1081/amp-200053462.
  • Rath, S.; Singh, A. K.; Bhaskar, U.; Krishna, B.; Santra, B. K.; Rai, D. K.; Neogi, N. Artificial Neural Network Modeling for Prediction of Roll Force During Plate Rolling Process. Mat. And Mfg. Pro. 2010, 25(1–3), 149–153. doi: 10.1080/10426910903158249.
  • Liu, W.; Zhang, J.; Zhang, Z.; Wang, D.; Xu, C.; Zong, X.; Nie, K. High-Strength Mg95Y3Zn1Ni1 Alloy with LPSO Structure Processed by Hot Rolling. Mat. And Mfg. Pro 2017 2, 32(1), 62–68. doi: 10.1080/10426914.2015.1127958.
  • Duran, D.; Özdemir, İ. Predicting and Measuring Surface Enlargement in Forward Rod Extrusion. J. Mfg. Sci. Engg. 2016, 138, 7. doi: 10.1115/1.4032261.
  • Hoon Lee, D.; Bo Lee, K.; Sang Lee, J.; Jin Yun, S.; Jin Shin, T.; Moo Hwang, S. A New Model for the Prediction of Width Spread in Roughing Mills. J. Mfg. Sc. Engg. 2014, 136(5). doi: 10.1115/1.4027970.
  • Visser, J. A.; Mathews, E. H. Numerical Modelling of the Heat Transfer in and Around a Steel Bar During Hot Rolling. Comm. App. Num. Methods. 1988, 4(5), 657–664. doi: 10.1002/cnm.1630040509.
  • Mittal, P.; Mohanty, I.; Malik, A.; Mitra, K. Many-Objective Optimization of Hot-Rolling Process of Steel: A Hybrid Approach. Mat. And Mfg. Pro. 2019, 35(6), 668–676. doi: 10.1080/10426914.2019.1655157.
  • Zhao, C.; Zhang, J.; Yang, B.; Li, Y. F.; Huang, J. F.; Lian, Y. Hot Deformation Characteristics and Processing Map of 1Cr12Ni2Mo2WVNb Martensitic Stainless Steel. Steel Res. Int. 2020, 91(7), 2000020. doi: 10.1002/srin.202000020.
  • Sk, M. B.; Syed, B.; Chatterjee, A.; Lodh, A.; Kundu, S.; Chakrabarti, D. Effect of Thermal Exposure on the Charpy Impact Properties of Thermo-Mechanically Treated Reinforcement Steel Bar. Steel Res. Int., 2016, 88(5), 1600286. doi: 10.1002/srin.201600286.
  • Singh, G.; Kumar Singh, P. Modelling and Optimization of Process Parameters During Grooved Hot Rolling of SAE 1020 Steel. Mat. And Mfg. Pro. 2022, 38(6), 701–721. doi: https://doi.org/10.1080/10426914.2022.2149778.
  • Kapil, S.; Eberhard, P.; Dwivedy, S. K. Dynamic Analysis of Cold-Rolling Process Using the Finite-Element Method. J. Mfg. Sc. Engg. 2015, 138(4), 4. doi: https://doi.org/10.1115/1.4031280.
  • Rath, S. Computer Simulation of Hot Rolling of Flat Products. Soft. Engg. 2016, 4(6), 75–81. doi: 10.11648/j.se.20160406.11.
  • Razani, N. A.; Mollaei Dariani, B.; Soltanpour, M. Microstructure and Mechanical Property Improvement of X70 in Asymmetrical Thermomechanical Rolling. The Int. J. Adv. Mfg. Tech. 2018, 97(9–12), 3981–3997. doi: 10.1007/s00170-018-1823-2.
  • Lim, H.-B.; Yang, H.-I.; Kim, C.-W. Analysis of the Roll Hunting Force Due to Hardness in a Hot Rolling Process. J. Mech. Sci. Tech. 2019, 33(8), 3783–3793. doi: 10.1007/s12206-019-0721-3.
  • Bayoumi, L. S.; Lee, Y. Effect of Interstand Tension on Roll Load, Torque and Workpiece Deformation in the Rod Rolling Process. J. Of Mat. Pro. Tech. 2004, 145(1), 7–13. doi: 10.1016/s0924-0136(03)00581-8.
  • Ragab, A. R.; Samy, S. N. Evaluation of Estimates of Roll Separating Force in Bar Rolling. T. ASME. J. Mfg. Sci. Engg. 2006, 128(1), 34–45. doi: 10.1115/1.2120779.
  • El-Bitar, T.; El-Meligy, M.; El-Shenawy, E. Prediction of Roll Separating Force in a Roll Pass Design of Micro-Alloyed Steel Rods. H. Per. Opt. Des. Str. Mat. 2014. doi: 10.2495/hpsm140071.
  • Majumder, M. K.; More, P. R.; Chatterjee, S.; Mandley, P. S.; Pal, S. K. Roll Separating Force in Hot Rolling Under Grooved Rolls–A Finite Element Analysis and Experimental Validation. Ind. J. Engg. Mat. Sci. 2016, 23, 267–273.
  • Wang, X. F.; Chandrashekhara, K.; Rummel, S. A.; Naumovich Lekakh, S.; Van, D. C.; O’Malley, R. J. Modeling of Mass Flow Behavior of Hot Rolled Low Alloy Steel Based on Combined Johnson-Cook and Zerilli-Armstrong Model. J. Mat. Sci. 2017, 52(5), 2800–2815. doi: 10.1007/s10853-016-0570-8.
  • Hanoglu, U.; Šarler, B. Multi-Pass Hot-Rolling Simulation Using a Meshless Method. Comput. Struct. 2018, 194, 1–14. doi: 10.1016/j.compstruc.2017.08.012.
  • Chan, B. P.; Wang, S. A.; Shoup, J. M. Real Time Torque Measurement of Rolling Mill Drive. IEEE. 1999. doi: 10.1109/ias.1999.800007.
  • Bagheripoor, M.; Bisadi, H. An Investigation on the Roll Force and Torque Fluctuations During Hot Strip Rolling Process. Prod. Mfg. Res. 2014, 2(1), 128–141. doi: 10.1080/21693277.2014.895916.
  • Kwak, W. J.; Lee, J. H.; Hwang, S. M.; Kim, Y. H. A Precision On-Line Model for the Prediction of Roll Force and Roll Power in Hot-Strip Rolling. Met. Mat. Tr. A. 2002, 33(10), 3255–3272. doi: 10.1007/s11661-002-0312-1.
  • Zhang, S.-N.; Zhao, D. X.; Gao, C. S. The Calculation of Roll Torque and Roll Separating Force for Broadside Rolling by Stream Function Method. Int. J. Of Mech. Sci. 2012, 57(1), 74–78. doi: 10.1016/j.ijmecsci.2012.02.006.
  • Said, A.; Lenard, J. G.; Ragab, A. R.; Elkhier, M. A. The Temperature, Roll Force and Roll Torque During Hot Bar Rolling. J. Mat. Pro. Tech. 1999, 88(1–3), 147–153. doi: 10.1016/s0924-0136(98)00391-4.
  • Mori, K.; Osakada, K.; Oda, T. Simulation of Plane-Strain Rolling by the Rigid-Plastic Finite Element Method. Int. J. Of Mech. Sci.24(9), 519–527. doi: 10.1016/0020-7403(82)90044-3.
  • Hwang, S. M.; Kobayashi, S. Preform Design in Plane-Strain Rolling by the Finite-Element Method. In. J. Ma. T. Des. Res. 1984, 24(4), 253–266. doi: 10.1016/0020-7357(84)90060-x.
  • Klosterman, L. E.; Richter, R. T.; Crowley, M. D.; Maslanka, A.; inventors; Alcoa Inc.; assignee. Method for Reducing Crop Losses During Ingot Rolling. United States patent US 6. 453;712. 2002.
  • Chun, M.-H.; Moon, Y.-J. Optimization of the Amount of Edging to Increase Rolling Yields in a Plate Mill. J. Of Mat. Pro. Tech. 2000, 104(1–2), 11–16. doi: 10.1016/s0924-0136(00)00558-6.
  • Moon, C.-H.; Lee, Y. An Approximate Model for Local Strain Variation Over Material Thickness and Its Applications to Thick Plate Rolling Process. ISIJ Int. 2009, 49(3), 402–407. doi: 10.2355/isijinternational.49.402.
  • Byon, S. M. Numerical and Experimental Approach to Investigate Plane-View Shape and Crop Loss in Multistage Plate Rolling. Trans. Kor. Soc. Mech. Engs. 2013, 37(9), 1117–1125. doi: 10.3795/ksme-a.2013.37.9.1117.
  • Li, X.; Wang, H. Y.; Ding, J. G.; Xu, J. J.; Zhang, D. H. Analysis and Prediction of Fishtail During VH Hot Rolling Process. J. Cen. S. Uni. 2015, 22(4), 1184–1190. doi: 10.1007/s11771-015-2632-5.
  • Nalawade, R. S.; Marje, V. R.; Balachandran, G.; Balasubramanian, V. Effect of Pass Schedule and Groove Design on the Metal Deformation of 38MnVS6 in the Initial Passes of Hot Rolling. Sadhana. 2016, 41(1), 111–124. doi: 10.1007/s12046-015-0457-4.
  • Nalawade, R. S.; Mahadik, K. N.; Balasubramanian, V.; Singh, R.; Satish, V.; Cheekatla, K.; Date, P. P. A Novel Method to Reduce End Crop Loss in Rolled Bars. Steel. Tech. 2012, 6(4), 57–66.
  • Rentsch, R.; Prinz, C. Finite Element Analysis of the Hot Rolling Process on the Origins of Inhomogeneities Related to Steel Bar Distortion. Materialwissenschaft und Werkstofftechnik. 2012, 43(1–2), 73–77. doi: 10.1002/mawe.201100891.
  • Yuxi, Y.; Sun, Q.; Chen, J.; Pan, H. Effect of Processing Parameters on Edge Cracking in Cold Rolling. Mat. And Mfg. Pro. 2015, 30(10), 1174–1178. doi: 10.1080/10426914.2013.811746.
  • Sikdar, S.; Mukherjee, I. A Holistic Framework for Multiple Response Optimization of Hot Strip Rolling Process. Mat. And Mfg. Pro. 2011, 26(11), 1393–1403. doi: 10.1080/10426914.2010.544821.
  • Atık, E.; Yunker, U.; Merıç, C. The Effects of Conventional Heat Treatment and Boronizing on Abrasive Wear and Corrosion of SAE 1010, SAE 1040, D2 and 304 Steels. Tri. Int. 2003, 36(3), 155–161. doi: 10.1016/s0301-679x(02)00069-5.
  • Krishnam, P. V.; Srikant, R. R.; Rao, D. N. Experimental Investigation on the Performance of Nanoboric Acid Suspensions in SAE-40 and Coconut Oil During Turning of AISI 1040 Steel. Int. J. Mac. T. Mfr. 2010, 50(10), 911–916. doi: 10.1016/j.ijmachtools.2010.06.001.
  • Gür, C. H.; Çam, İ. Comparison of Magnetic Barkhausen Noise and Ultrasonic Velocity Measurements for Microstructure Evaluation of SAE 1040 and SAE 4140 Steels. Mat. Char. 2007, 58(5), 447–454. doi: 10.1016/j.matchar.2006.06.008.
  • Singh, G.; Singh, P. K. Effect of Process Parameters on Performance of Grooved Hot Rolling of SAE 4340 Steel Bars. Mat. And Mfg. Pro. 2022, 38(2), 206–219. doi: 10.1080/10426914.2022.2075894.
  • Ayyappan, S. K.; Subramaniam, R. B. Analysis of In-Site Grinding Process Using New Equipment for Calendar Roll Machines. Mat. And Mfg. Pro 2019 27, 34(10), 1136–1142. doi: 10.1080/10426914.2019.1628264.
  • Durante, M.; Formisano, A.; Boccarusso, L.; Langella, A. Influence of Cold-Rolling on Incremental Sheet Forming of Polycarbonate. Mat. And Mfg. Pro. 2020, 35(3), 328–336. doi: 10.1080/10426914.2020.1726946.
  • Ståhlberg, U.; Göransson, A. Heavy Reductions by Means of “Non-Bite” Rolling, Including Some Observations on Workpiece Shape. J. Mech. W. Tech. 1986, 12(3), 373–384. doi: 10.1016/0378-3804(86)90007-0.
  • Nguyen-Thoi, T.; Liu, G. R.; Lam, K. Y.; Zhang, G. Y. A Face-Based Smoothed Finite Element Method (FS-FEM) for 3D Linear and Geometrically Non-Linear Solid Mechanics Problems Using 4-Node Tetrahedral Elements. Int. J. Num. Met. Engg. 2008, 78(3), 324–353. doi: 10.1002/nme.2491.
  • Perumalsamy, J.; Gupta, P.; Sangwai, J. S. Performance Evaluation of Esters and Graphene Nanoparticles as an Additives on the Rheological and Lubrication Properties of Water-Based Drilling Mud. J. Pet. Sci. Engg. 2021, 204, 108680. doi: 10.1016/j.petrol.2021.108680.
  • Falkinger, G.; Simon, P.; Mitsche, S. Viscoplastic Self-Consistent Modeling of the Through-Thickness Texture of a Hot-Rolled Al-Mg-Si Plate. Met. Mat. Tr. A. 2020, 51(6), 3066–3075. doi: 10.1007/s11661-020-05743-y.
  • Wusatowski, Z., Engineer. Fundamentals of Rolling; Pergamon Press: Oxford, New York, 1969; pp. 25–150.doi: 10.1016/B978-0-08-012276-2.50008-6
  • Singh, G.; Singh, P. K. Effect of Process Parameters on Roll Separating Force, Driving Torque and End Crop Length During Grooved Hot Rolling of SAE 1020 Steel. J. Mfg Pro. 2022, 79, 1003–1016. doi: 10.1016/j.jmapro.2022.05.015.
  • Singh, G.; Singh, P. K. Effect of Process Parameters on Roll Separating Force.; Driving Torque.; and End Crop Length During Grooved Hot Rolling of SAE 1541 Steel. The Int. J. Adv. Mfg. Tech. 2023, 124(7–8), 2463–2482. doi: 10.1007/s00170-022-10232-0.
  • Singh, G.; Singh, P. K. Improving the Energy Efficiency and Process Scrap in Grooved Hot Rolling of SAE 52100 Steel Billets. CIRP J. Mfg. Sci. Tech. 2023, 41, 55–68. doi: 10.1016/j.cirpj.2022.11.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.