176
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Factor Effects in Process of Vertical Centrifugal Casting

, , &
Pages 386-397 | Received 16 Dec 2022, Accepted 25 May 2023, Published online: 18 Jul 2023

References

  • Kim, W.; Jang, K.; Ji, C.; Lee, E. Effects of Heat Treatment on the Microstructure and Hardness of A356 (AlSi7mg0.3) Manufactured by Vertical Centrifugal Casting. Appl. Sci. 2021, 11(23), 11572–11583. DOI: 10.3390/app112311572.
  • Oyewole, A.; Sunday, A. M. Design and Fabrication of a Centrifugal Casting Machine. Int J. Eng. Sci. Technol. 2011, 3(11), 8204–8210.
  • Pandey, S.; Jha, S. K. Casting Defects and Its Optimization Method in Centrifugal Casting Process: A Review. International Conference on Advances in Materials and Manufacturing, Ranchi, 2017, 72–76.
  • Chirita, G.; Soares, D.; Silva, F. S. Advantages of the Centrifugal Casting Technique for the Production of Structural Components with Al–Si Alloys. Mater. Des. 2008, 29(1), 20–27. DOI: 10.1016/j.matdes.2006.12.011.
  • Chirita, G.; Stefanescu, I.; Barbosa, J.; Puga, H.; Soares, D.; Silva, F. S. On Assessment of Processing Variables in Vertical Centrifugal Casting Technique. Int. J. Cast Met. Res. 2009, 22(5), 382–389. DOI: 10.1179/174313309X380422.
  • Wang, Q.; Wang, L.; Zhang, W.; Chou, K. Influence of Cooling Rate on Solidification Process Ce-High Mo Austenite Stainless Steel: Nucleation, Growth, and Microstructure Evolution. Metals. 2023, 13(2), 246–258. DOI: 10.3390/met13020246.
  • Sui, Y.; Wang, Q.; Ye, B.; Zhang, L.; Jiang, H.; Ding, W. Effect of Solidification Sequence on the Microstructure and Mechanical Properties of Die-Cast Al–11Si–2Cu–Fe Alloy. J. Alloys Compound. 2015, 649, 679–686. DOI: 10.1016/j.jallcom.2015.07.187.
  • Borsato, T.; Ferro, P.; Berto, F.; Carollo, C. Effect of Solidification Time on Microstructural, Mechanical and Fatigue Properties of Solution Strengthened Ferritic Ductile Iron. Metals. 2019, 9(1), 24. DOI: 10.3390/met9010024.
  • Hoepers, E.; Cabezas, C. S.; de Verran, G. O. Effect of Solidification Time on the Microstructure and Mechanical Properties of the Compacted Graphite Iron for Heavy Duty Engine Blocks. International conference SIMEA - Simpósio Internacional de Engenharia Automotiva, Sao Paulo,2022.
  • Shabestari, S. G.; Moemeni, H. Effect of Copper and Solidification Conditions on the Microstructure and Mechanical Properties of Al–Si–Mg Alloys. J. Mater. Process. Technol. 2004, 153–154, 193–198. DOI: 10.1016/j.jmatprotec.2004.04.302.
  • El-Sayed, M. A. Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings. Int. J. Appl. Eng. Res. 2014, 9(21), 11575–11582.
  • Madhusudhan, N.; Mohankumar, S.; C, G.; Mukunda, P. G. Effect of Mould Wall Thickness on Rate of Solidification of Centrifugal Casting. Int J. Eng. Sci. Technol. 2010, 2(11), 6092–6096.
  • Tattimani, M. S.; Maheswar, C. Y.; Reddy, B.; Badi, S.; Ambadas, M.; S, A. The Effect of Rotational Speed on Quality of Sound Vertical Centrifugal Castings Tin. Manuf. Rev. 2021, 8, 21. DOI: 10.1051/mfreview/2021020.
  • Erhunmwun, I. D.; Etin-Osa, C. E. Temperature Distribution in Centrifugal Casting with Partial Solidification During Pouring. Int. J. Mater. Eng. Technol. 2019, 2, 39–45.
  • Shailesh, R. A.; Tattimani, M. S.; Rao, S. S. Understanding Melt Flow Behavior for Al-Si Alloys Processed Through Vertical Centrifugal Casting. Mater. Manuf. Process. 2015, 30(11), 1305–1311. DOI: 10.1080/10426914.2015.1019093.
  • Adelakin, T. K.; Suárez, O. M. Study of Boride-Reinforced Aluminum Matrix Composites Produced via Centrifugal Casting. Mater. Manuf. Process. 2011, 26(2), 338–345. DOI: 10.1080/10426910903124829.
  • Abbasi, M.; Vahdatnia, M.; Navaei, A. Solidification Microstructure of HK Heat Resistant Steel. Int. J. Met. 2015, 9(4), 19–26. DOI: 10.1007/BF03356036.
  • Liu, T.; Ban, C.; Le, Q.; Zhao, D.; Kang, J. Centrifugal Casting Simulation and Physical Field Analysis of ZL107. J. Phys.: Conf. Ser. 2022, 2390(1), 012089. DOI: 10.1088/1742-6596/2390/1/012089.
  • Janardhanan, S. Numerical Simulation of Centrifugal Casting for Functionally Graded Metal-Matrix Composites. Int. J. Mech. Eng. Technol. 2017, 8(4), 66–74.
  • Qian, X.; Sheng, X.; Meng, L.; Li, Y.; Wang, Z. Numerical Simulation of Solidification Structure of Al Alloy During Centrifugal Casting. J. Phys.: Conf. Ser. 2021, 2125(1), 012043. DOI: 10.1088/1742-6596/2125/1/012043.
  • Chen, Z.; Li, Y.; Zhao, F.; Li, S.; Zhang, J. Progress in Numerical Simulation of Casting Process. Meas. Control. 2022, 55(5–6), 257–264. DOI: 10.1177/00202940221102656.
  • Doctor, Y. N.; Patil, D. B. T.; Darekar, A. M. Review of Optimization Aspects for Casting Processes. Int. J. Sci. Res. 2013, 4(3), 2364–2368.
  • Vajd, A.; Samadi, A. Optimization of Centrifugal Casting Parameters to Produce the Functionally Graded Al–15wt%Mg2Si Composites with Higher Tensile Properties. Int. J. Met. 2020, 14(4), 937–948. DOI: 10.1007/s40962-019-00394-1.
  • Tao, P.; Shao, H.; Ji, Z.; Nan, H.; Xu, Q. Numerical Simulation for the Investment Casting Process of a Large-Size Titanium Alloy Thin-Wall Casing. Prog. Nat. Sci. 2018, 28(4), 520–528. DOI: 10.1016/j.pnsc.2018.06.005.
  • Lv, S.; Dou, R.; Yu, B.; Wang, J.; Liu, X.; Wen, Z. Experimental and Numerical Studies on the Influence of Centrifugal Casting Parameters on the Solidification Structure of Al-Cu Alloy. Mater. Res. Express. 2022, 9(10), 106506. DOI: 10.1088/2053-1591/ac94b8.
  • Abdul Samad, P. A.; Shalij, P. R.; Ramesh, A.; Mubarak, A. K. Computational Fluid Dynamics Simulation on Particulate Distribution in Gyro Casting for the Manufacture of Al/SiC Particulate Metal Matrix Composite. J. Appl. Fluid. Mech. 2019, 12(5), 1585–1597. DOI: 10.29252/jafm.12.05.29637.
  • Chelladurai, S. J. S.; K, M.; Ray, A. P.; Upadhyaya, M.; Narasimharaj, V.; Gnanasekaran, S. Optimization of Process Parameters Using Response Surface Methodology: A Review. Mater. Today Proc. 2021, 37, 1301–1304. DOI: 10.1016/j.matpr.2020.06.466.
  • Ali, S. M. Optimization of Centrifugal Casting Parameters of AlSi Alloy by Using the Response Surface Methodology. Int. J. Eng. 2019, 32(11), 1516–1526.
  • Shayganpour, A.; Idris, M. H.; Izman, S.; Jafari, H. DOE Applied to Study the Effect of Process Parameters on Silicon Spacing in Lost Foam Al-Si-Cu Alloy Casting. IOP Conf. Ser Mater. Sci. Eng. 2012, 36, 012035. DOI: 10.1088/1757-899X/36/1/012035.
  • Saleh, B.; Fathi, R.; Abdalla, M. A. A.; Radhika, N.; Ma, A.; Jiang, J. Optimization and Characterization of Centrifugal-Cast Functionally Graded Al-SiC Composite Using Response Surface Methodology and Grey Relational Analysis. Coatings. 2023, 13(5), 813–838. DOI: 10.3390/coatings13050813.
  • Kumar, S.; Satsangi, P. S.; Prajapati, D. R. Optimization of Green Sand Casting Process Parameters of a Foundry by Using Taguchi’s Method. Int. J. Adv. Manuf. Technol. 2011, 55(1–4), 23–34. DOI: 10.1007/s00170-010-3029-0.
  • Barati, E.; Akbari, J. The Effect of Injection Parameters on Dimensional Accuracy of Wax Patterns for Investment Casting. J. Comput. Appl. Res. Mech. Eng. 2019, 9(2), 313–322.
  • Gunasegaram, D. R.; Farnsworth, D. J.; Nguyen, T. T. Identification of Critical Factors Affecting Shrinkage Porosity in Permanent Mold Casting Using Numerical Simulations Based on Design of Experiments. J. Mater. Process. Technol. 2009, 209(3), 1209–1219. DOI: 10.1016/j.jmatprotec.2008.03.044.
  • Khare, M.; Kumar, D. Optimization of Sand Casting Parameters Using Factorial Design. Int. J. Sci. Res. 2012, 3(1), 151–153. DOI: 10.15373/22778179/JAN2014/49.
  • Ranieri, K.; Kiyan, C.; Costa, A. F. B.; Simões, A. Z. Analysis of Semi-Solid Processing for Metal Matrix Composite Synthesis Using Factorial Design. Mater. Res. 2012, 15(1), 144–150. DOI: 10.1590/S1516-14392012005000005.
  • Asensio-Lozano, J.; Álvarez-Antolín, J. F.; Voort, G. F. V. Identification and Quantification of Active Manufacturing Factors for Graphite Formation in Centrifugally Cast Nihard Cast Irons. J. Mater. Process. Technol. 2008, 206(1–3), 202–215. DOI: 10.1016/j.jmatprotec.2007.12.015.
  • Inapakurthi, R. K.; Naik, S. S.; Mitra, K. Toward Faster Operational Optimization of Cascaded MSMPR Crystallizers Using Multiobjective Support Vector Regression. Ind. Eng. Chem. Res. 2022, 61(31), 11518–11533. DOI: 10.1021/acs.iecr.2c00526.
  • Inapakurthi, R. K.; Mitra, K. Optimal Surrogate Building Using SVR for an Industrial Grinding Process. Mater. Manuf. Process. 2022, 37(15), 1701–1707. DOI: 10.1080/10426914.2022.2039699.
  • Manoj, A.; Miriyala, S. S.; Mitra, K. Multi-Objective Optimization Through a Novel Bayesian Approach for Industrial Manufacturing of Polyvinyl Acetate. Mater. Manuf. Process. 2023, 1–9. DOI: 10.1080/10426914.2023.2195915.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.