195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of submerged arc welding flux from rice straw ash

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 259-268 | Received 20 Oct 2022, Accepted 13 Jul 2023, Published online: 18 Jul 2023

References

  • Pandey, A. K.; Pandey, P. M.; Pandey, S. Control of Weld Distortion Through in-Situ Preheating of Weld Filler Wire. Mater. Manuf. Processes. 2021, 36(7), 836–842. DOI: 10.1080/10426914.2020.1866194.
  • Cunha, T. V. D.; Ribeiro, H. O.; Dos Santos, F. J. Weaving Technique Applied in Submerged Arc Welding Process: Metallurgical Analysis. Mater. Manuf. Processes. 2021, 36(5), 618–625. DOI: 10.1080/10426914.2020.1854463.
  • Sharma, S. K.; Maheshwari, S.; Singh, R. K. R. Effect of Heat-Input and Cooling-Time on Bead Characteristics in SAW. Mater. Manuf. Processes. 2019, 34(2), 208–215. DOI: 10.1080/10426914.2018.1532578.
  • Kristály, F.; Tóth, Z. H.; Ringer, Á.; Török, B. Archaeometry of Fire Aided Limnosilicite Mining in the Avas-Tűzköves (Miskolc, NE-Hungary) Paleolithic Silica Source. Mater. Manuf. Processes. 2020, 35(13), 1403–1409. DOI: 10.1080/10426914.2020.1755437.
  • Zhong, Z.-W. Processes for Environmentally Friendly And/Or Cost-Effective Manufacturing. Mater. Manuf. Processes. 2021, 36(9), 987–1009. DOI: 10.1080/10426914.2021.1885709.
  • Chakraborty, T.; Sahu, D. R.; Mandal, A.; Acherjee, B. Feasibility of Jatropha and Rice Bran Vegetable Oils as Sustainable EDM Dielectrics. Mater. Manuf. Processes. 2023, 2022(1), 1–14. DOI: 10.1080/10426914.2022.2089891.
  • Garg, J.; Garg, S. B.; Jeet, B.; Singh, H. J. S. The Effects of Flux Particle Size and Column Height on the Bead Geometry in Submerged Arc Welding. Sādhanā. 2022, 47(4), 1–12. DOI: 10.1007/s12046-022-01971-7.
  • Singh, K.; Pandey, S. Recycling of Slag to Act as a Flux in Submerged Arc Welding. Resour. Conserv. Recycl. 2009, 53(10), 552–558. DOI: 10.1016/j.resconrec.2009.04.006.
  • Garg, J.; Singh, K. Slag Recycling in Submerged Arc Welding and Its Effects on the Quality of Stainless Steel Claddings. Mater. Des. 2016, 108, 689–698. DOI: 10.1016/j.matdes.2016.07.028.
  • Saini, S.; Singh, K. Waste to Wealth: Recycling of Steel Slag as Flux for the Submerged Arc Welding Process and Its Effect on Mechanical and Metallurgical Properties of Welds. Proc. Inst. Mech. Eng., Part C: J Mech. Eng. Sci. 2022, 2022(16), 8980–8990. DOI: 10.1177/09544062221089253.
  • Singh, M.; Pant, M.; Godiyal, R.; Kumar Sharma, A. MCDM Approach for Selection of Raw Material in Pulp and Papermaking Industry. Mater. Manuf. Processes. 2020, 35(3), 241–249. DOI: 10.1080/10426914.2020.1711917.
  • Kaur, A. Crop Residue in Punjab Agriculture-Status and Constraints. Jour. Krish. Vigy. 2017, 5(2), 22–26. DOI: https://doi.org/10.5958/2349-4433.2017.00005.8.
  • Singh, R.; Patel, M. Effective Utilization of Rice Straw in Value-Added By-Products: A Systematic Review of State of Art and Future Perspectives. Biomass Bioenergy. 2022, 159, 106411. DOI: 10.1016/j.biombioe.2022.106411.
  • Ibrahim, H. Bio-Energy Production from Rice Straw: A Review. Recent Adv. Petrochem. Sci. 2018, 5(5), 1–7. DOI: 10.19080/RAPSCI.2018.05.555671.
  • Arai, H.; Hosen, Y.; Pham Hong, V. N.; Thi, N. T.; Huu, C. N.; Inubushi, K. Greenhouse Gas Emissions from Rice Straw Burning and Straw-Mushroom Cultivation in a Triple Rice Cropping System in the Mekong Delta. Soil Sci. Plant Nutr. 2015, 61(4), 719–735. DOI: 10.1080/00380768.2015.1041862.
  • Ismail, H.; Mohamad, H. Bioactivity and Biocompatibility Properties of Sustainable Wollastonite Bioceramics from Rice Husk Ash/Rice Straw Ash: A Review. Materials. 2021, 14(18), 5193. DOI. DOI:10.3390/ma14185193.
  • Hidalgo, S.; Soriano, L.; Monzó, J.; Payá, J.; Font, A.; Borrachero, V. Evaluation of Rice Straw Ash as a Pozzolanic Addition in Cementitious Mixtures. Appl. Sci. 2021, 11(2), 773. DOI. DOI:10.3390/app11020773.
  • Morsy, M.; Rashwan, M. Replacement Effect of Cement by Rice Straw Ash on Cement Mortar Properties. Misr J. Agric. Eng. 2015, 32(4), 1685–1708. DOI: 10.21608/MJAE.2015.97843.
  • Nadkarni, S. V. Modern Arc Welding Technology; Oxford & IBH Publishing Company: New Delhi, IN, 2014.
  • Paniagua-Mercado, A. M.; Lopez-Hirata, V. M. Chemical and Physical Properties of Fluxes for SAW of Low-Carbon Steels. In Arc Welding; Sudnik, W., Ed.; InTech: Rijeka, Croatia, 2011; Vol. 13, pp. 281–298.
  • Shafiq, I.; Shafique, S.; Akhter, P.; Yang, W.; Hussain, M. Recent Developments in Alumina Supported Hydrodesulfurization Catalysts for the Production of Sulfur-Free Refinery Products: A Technical Review. Catal. Rev. 2022, 64(1), 1–86. DOI: 10.1080/01614940.2020.1780824.
  • Khamouli, F.; Zidani, M.; Digheche, K.; Saoudi, A.; Moussi, H.; Atoui, L. H. Chemical Characterization of the Crystalline Phases in Agglomerated Fluxes and Slags for Shielded Metal Arc Welding. Solid State Phenom. 2019, 297, 151–164. DOI: 10.4028/www.scientific.net/SSP.297.151.
  • Sharma, L.; Chhibber, R. J. C. I. Investigating the Physicochemical and Thermophysical Properties of Submerged Arc Welding Fluxes Designed Using TiO2-SiO2-MgO and SiO2-MgO-Al2O3 Flux Systems for Linepipe Steels. Ceram. Int. 2019, 45(2), 1569–1587. DOI: 10.1016/j.ceramint.2018.10.032.
  • Saini, S.; Singh, K. Recycling of Steel Slag as a Flux for Submerged Arc Welding and Its Effects on Chemistry and Performance of Welds. Int. J. Adv. Manuf. Technol. 2021, 114(3), 1165–1177. DOI: 10.1007/s00170-021-06866-1.
  • AlIthari, A. S.; Thahab, S. M.; Al-Obbaidi, A. F. Effect of Adding TiO2 Nanoparticles on the Impact Toughness for Welding Joints of Mild Steel. Australian Journal Of Mechanical Engineering. 2023, 2020(1), 1–14. DOI: 10.1080/14484846.2020.1816734.
  • Wang, W.; Liu, S. Alloying and Microstructural Management in Developing SMAW Electrodes for HSLA-100 Steel. Weld. J. 2002, 81(7), 132–S.
  • Zhang, J.; Coetsee, T.; Dong, H.; Wang, C. Element Transfer Behaviors of Fused CaF2-TiO2 Fluxes in EH36 Shipbuilding Steel During High Heat Input Submerged Arc Welding. Metallurgical And Materials Transactions B. 2020, 51(5), 1953–1957. DOI: 10.1007/s11663-020-01936-3.
  • Davis, K. Material Review: Alumina (Al2O3). School Doctoral Stud. Eur. Union J. 2010, 2, 109–114.
  • Trembach, B.; Grin, A.; Turchanin, M.; Makarenko, N.; Markov, O.; Trembach, I. Application of Taguchi Method and ANOVA Analysis for Optimization of Process Parameters and Exothermic Addition (CuO-Al) Introduction in the Core Filler During Self-Shielded Flux-Cored Arc Welding. Int. J. Adv. Manuf. Technol. 2021, 114(3), 1099–1118. DOI: 10.1007/s00170-021-06869-y.
  • Sonar, T.; Malarvizhi, S.; Balasubramanian, V. J. A. J. O. M. E. Influence of Arc Constriction Current (ACC) on Microstructural Evolution and Tensile Properties of Tungsten Inert Gas Welded Thin Sheets of Aerospace Alloy. Australian Journal Of Mechanical Engineering. 2022, 2020(5), 1–20. DOI: 10.1080/14484846.2020.1794512.
  • Kuroiwa, R.; Liu, H.; Aoki, Y.; Yoon, S.; Fujii, H.; Murayama, G.; Yasuyama, M. J. S.; Welding, T. O. Joining Microstructure Control of Medium Carbon Steel Joints by Low-Temperature Linear Friction Welding. Sci. Technol. Weld. Joining. 2019, 25(1), 1–9. DOI: 10.1080/13621718.2019.1600771.
  • Eagar, T. W. Sources of Weld Metal Oxygen Contamination During Submerged Arc Welding. Weld. J. 1978, 57(3), 76s–80s.
  • Grong, O.; Siewert, T.; Martins, G.; Olson, D. A Model for the Silicon-Manganese Deoxidation of Steel Weld Metals. J Metall. Mater. Trans. A. 1986, 17(10), 1797–1807. DOI: 10.1007/BF02817277.
  • Chaveriat, P.; Kim, G.; Shah, S.; Indacochea, J. E. Low Carbon Steel Weld Metal Microstructures: The Role of Oxygen and Manganese. J Mater. Eng. 1987, 9(3), 253–267. DOI: https://doi.org/10.1007/BF02834145.
  • Evans, G. Effect of Manganese on the Microstructure and Properties of All-Weld-Metal Deposits. Weld. J. 1983, 19(1), 2–12.
  • Sridhar, P.; Biswas, P.; Mahanta, P. Effect of Process Parameters on Bead Geometry, Tensile and Microstructural Properties of Double-Sided Butt Submerged Arc Welding of SS 304 Austenitic Stainless Steel. J. Braz. Soc. Mech. Sci. Eng. 2020, 42(10), 1–15. DOI: 10.1007/s40430-020-02636-4.
  • Mollaei Milani, J.; Saeid, T. Acicular Ferrite Nucleation and Growth in Api5L-X65 Steel Submerged Arc Welded Joints. Mater. Sci. Technol. 2020, 36(13), 1398–1406. DOI: 10.1080/02670836.2020.1783774.
  • Goel, P.; Khan, N. Z.; Khan, Z. A.; Ahmari, A.; Gangil, N.; Abidi, M. H.; Siddiquee, A. N. Investigation on Material Mixing During FSW of AA7475 to AISI304. Mater. Manuf. Processes. 2019, 34(2), 192–200. DOI: 10.1080/10426914.2018.1544717.
  • Ragavendran, M.; Vasudevan, M. Laser and Hybrid Laser Welding of Type 316L (N) Austenitic Stainless Steel Plates. Mater. Manuf. Processes. 2020, 35(8), 922–934. DOI: 10.1080/10426914.2020.1745231.
  • Carvalho, G.; Galvão, I.; Mendes, R.; Leal, R.; Loureiro, A. Friction Stir Welding and Explosive Welding of Aluminum/Copper: Process Analysis. Mater. Manuf. Processes. 2019, 34(11), 1243–1250. DOI: 10.1080/10426914.2019.1644452.
  • Yu, W.; Liu, B.; Chen, C.; Liu, M.; Zhang, X.; Fang, W.; Ji, P.; He, J.; Yin, F. Microstructure and Mechanical Properties of Stainless Steel Clad Plate Welding Joints by Different Welding Processes. Sci. Technol. Weld. Joining. 2020, 25(7), 571–580. DOI: 10.1080/13621718.2020.1774995.
  • Singhal, T. S.; Jain, J. K.; Kumar, M.; Saxena, K. K. Effect of Filler Wire Preheating and Nozzle Cooling with Advanced Submerged Arc Welding Process on Bead Geometry and Microstructure. Adv. Mater. Process. Technol. 2022, 2021(sup2), 1–15. DOI: 10.1080/2374068X.2021.1934645.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.