258
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A crystallization case study toward optimization of expensive to evaluate mathematical models using Bayesian approach

, &
Pages 2127-2134 | Received 10 Jul 2023, Accepted 10 Jul 2023, Published online: 25 Jul 2023

References

  • Orehek, J.; Teslić, D.; Likozar, B. Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review. Org. Process Res Dev. 2021, 25(1), 16–42. DOI: 10.1021/acs.oprd.0c00398.
  • Wood, B.; Girard, K. P.; Polster, C. S.; Croker, D. M. Progress to Date in the Design and Operation of Continuous Crystallization Processes for Pharmaceutical Applications. Org. Process Res Dev. 2019, 23(2), 122–144. DOI: 10.1021/acs.oprd.8b00319.
  • Wang, T.; Lu, H.; Wang, J.; Xiao, Y.; Zhou, Y.; Bao, Y.; Hao, H. Recent Progress of Continuous Crystallization. J. Ind. Eng. Chem. 2017, 54, 14–29. DOI: 10.1016/j.jiec.2017.06.009.
  • Power, G.; Hou, G.; Kamaraju, V. K.; Morris, G.; Zhao, Y.; Glennon, B. Design and Optimization of a Multistage Continuous Cooling Mixed Suspension, Mixed Product Removal Crystallizer. Chem. Eng. Sci. 2015, 133, 125–139. DOI: 10.1016/j.ces.2015.02.014.
  • Diab, S.; Gerogiorgis, D. I. Technoeconomic Optimization of Continuous Crystallization for Three Active Pharmaceutical Ingredients: Cyclosporine, Paracetamol, and Aliskiren. Ind. Eng. Chem. Res. 2018, 57, 9489–9499. DOI: 10.1021/acs.iecr.8b00679.
  • Alvarez, A. J.; Singh, A.; Myerson, A. S. Crystallization of Cyclosporine in a Multistage Continuous MSMPR Crystallizer. Cryst. Growth Des. 2011, 11, 4392–4400. DOI: 10.1021/cg200546g.
  • Vetter, T.; Burcham, C. L.; Doherty, M. F. Regions of Attainable Particle Sizes in Continuous and Batch Crystallization Processes. Chem. Eng. Sci. 2014, 106, 167–180. DOI: 10.1016/j.ces.2013.11.008.
  • Szilágyi, B.; Nagy, Z. K. Population Balance Modeling and Optimization of an Integrated Batch Crystallizer–Wet Mill System for Crystal Size Distribution Control. Cryst. Growth Des. 2018, 18(3), 1415–1424. DOI: 10.1021/acs.cgd.7b01331.
  • Xiouras, C.; Cameli, F.; Quilló, G. L.; Kavousanakis, M. E.; Vlachos, D. G.; Stefanidis, G. D. Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chem. Rev. 2022, 122(15), 13006–13042. DOI: 10.1021/acs.chemrev.2c00141.
  • Paengjuntuek, W.; Thanasinthana, L.; Arpornwichanop, A. Neural Network-Based Optimal Control of a Batch Crystallizer. Neurocomputing. 2012, 83, 158–164. DOI: 10.1016/j.neucom.2011.12.008.
  • Velásco-Mejía, A.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Torres-González, J.; Reyes-Vidal, Y.; Castañeda-Zaldivar, F. Modeling and Optimization of a Pharmaceutical Crystallization Process by Using Neural Networks and Genetic Algorithms. Powder Technol. 2016, 292, 122–128. DOI: 10.1016/j.powtec.2016.01.028.
  • Inapakurthi, R. K.; Naik, S. S.; Mitra, K. Toward Faster Operational Optimization of Cascaded MSMPR Crystallizers Using Multiobjective Support Vector Regression. Ind. Eng. Chem. Res. 2022, 61, 11518–11533. DOI: 10.1021/acs.iecr.2c00526.
  • Frazier, P. I. Bayesian Optimization. In Recent Advances in Optimization and Modeling of Contemporary Problems; INFORMS, 2018; pp. 255–278.
  • Wang, K.; Dowling, A. W. Bayesian Optimization for Chemical Products and Functional Materials. Curr. Opin. Chem. Eng. 2022, 36. DOI: 10.1016/j.coche.2021.100728.
  • Guan, S.; Fu, N. Class Imbalance Learning with Bayesian Optimization Applied in Drug Discovery. Sci. Rep. 2022, 12. DOI: 10.1038/s41598-022-05717-7.
  • Deneault, J. R.; Chang, J.; Myung, J.; Hooper, D.; Armstrong, A.; Pitt, M.; Maruyama, B. Toward Autonomous Additive Manufacturing: Bayesian Optimization on a 3D Printer. MRS Bull. 2021, 46, 566–575. DOI: 10.1557/s43577-021-00051-1.
  • Hildenbrand, F.; Aupperle, F.; Stahl, G.; Figgmeier, E.; Sauer, D. U. Selection of Electrolyte Additive Quantities for Lithium-Ion Batteries Using Bayesian Optimization. Batter Supercaps. 2022, 5(7). DOI: 10.1002/batt.202200038.
  • Sano, S.; Kadowaki, T.; Tsuda, K.; Kimura, S. Application of Bayesian Optimization for Pharmaceutical Product Development. J. Pharm. Innov. 2020, 15, 333–343. DOI: 10.1007/s12247-019-09382-8.
  • Shu, L.; Jiang, P.; Shao, X.; Wang, Y. A New Multiobjective Bayesian Optimization Formulation with the Acquisition Function for Convergence and Diversity. J. Mech. Des. Trans. ASME. 2020, 142(9). DOI: 10.1115/1.4046508.
  • Facebook, S. D.; Facebook, M. B.; Facebook, E. B. Differentiable Expected Hypervolume Improvement for Parallel Multiobjective Bayesian Optimization.
  • Daulton, S.; Facebook, M. B.; Facebook, E. B. Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement.
  • Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEmo: A MATLAB Platform for Evolutionary Multiobjective Optimization [Educational Forum]. IEEE Comput. Intell. Mag. 2017, 12(4), 73–87. DOI: 10.1109/MCI.2017.2742868.
  • Balandat, M.; Karrer, B.; Jiang, D. R.; Daulton, S.; Letham, B.; Wilson, A. G.; Bakshy, E. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.