567
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Deep learning-based framework for the observation of real-time melt pool and detection of anomaly in wire-arc additive manufacturing

, &
Pages 761-777 | Received 20 Jul 2023, Accepted 18 Aug 2023, Published online: 05 Sep 2023

References

  • Chandra, M.; Kumar, K.; Thakur, P.; Chattopadhyaya, S.; Alam, F.; Kumar, S. Digital Technologies, Healthcare and Covid-19: Insights from Developing and Emerging Nations. Health Technol. (Berl). 2022, 12(2), 547–568. DOI: 10.1007/s12553-022-00650-1.
  • Rai, R.; Tiwari, M. K.; Ivanov, D.; Dolgui, A. Machine Learning in Manufacturing and Industry 4.0 Applications. Int. J. Prod. Res. 2021, 59(16), 4773–4778. DOI: 10.1080/00207543.2021.1956675.
  • DebRoy, T.; Wei, H. L.; Zuback, J. S.; Mukherjee, T.; Elmer, J. W.; Milewski, J. O.; Beese, A. M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components – Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. DOI: 10.1016/j.pmatsci.2017.10.001.
  • Chandra, M.; Vimal, K. E. K.; Rajak, S. A Comparative Study of Machine Learning Algorithms in the Prediction of Bead Geometry in Wire-Arc Additive Manufacturing. Int. J. Interact. Des. Manuf. 2023. DOI: 10.1007/s12008-023-01326-4.
  • Gaikwad, A.; Yavari, R.; Montazeri, M.; Cole, K.; Bian, L.; Rao, P. Toward the Digital Twin of Additive Manufacturing: Integrating Thermal Simulations, Sensing, and Analytics to Detect Process Faults. IISE Trans. 2020, 52(11), 1204–1217. DOI: 10.1080/24725854.2019.1701753.
  • Zhang, L.; Chen, X.; Zhou, W.; Cheng, T.; Chen, L.; Guo, Z.; Han, B.; Lu, L. Digital Twins for Additive Manufacturing: A State‐Of‐The‐Art Review. Appl. Sci. 2020, 10(23), 1–10. DOI: 10.3390/app10238350.
  • Nguyen, P. D.; Nguyen, T. Q.; Tao, Q. B.; Vogel, F.; Nguyen-Xuan, H. A Data-Driven Machine Learning Approach for the 3D Printing Process Optimisation. Virtual Phys. Prototyp. 2022, 17(4), 768–786. DOI: 10.1080/17452759.2022.2068446.
  • Chinchanikar, S.; Shaikh, A. A. A Review on Machine Learning, Big Data Analytics, and Design for Additive Manufacturing for Aerospace Applications. J. Mater. Eng. Perform. 2022, 31(8), 6112–6130. DOI: 10.1007/s11665-022-07125-4.
  • Guo, S.; Agarwal, M.; Cooper, C.; Tian, Q.; Gao, R. X.; Grace, W. G.; Guo, Y. B. Machine Learning for Metal Additive Manufacturing: Towards a Physics-Informed Data-Driven Paradigm. J. Manuf. Syst. 2022, 62, 145–163. DOI: 10.1016/j.jmsy.2021.11.003.
  • Chandra, M.; Vimal, K. E. K.; Rajak, S. In situ Process Monitoring and Control in Metal Additive Manufacturing. Addit. Manuf. Adv. Mater. Des. Tech. 2023, 1, 57.
  • Azizul Izham, E. D. I.; Alkahari, M. R.; Hussein, N. I. S.; Maidin, S.; Ramli, F. R.; Herawan, S. G. Online Monitoring of Wire Arc Additive Manufacturing Process: A Review. Adv. Mater. Process. Technol. 2023, 1–16. DOI: 10.1080/2374068X.2023.2190669.
  • Sarkon, G. K.; Safaei, B.; Kenevisi, M. S.; Arman, S.; Zeeshan, Q. State-Of-The-Art Review of Machine Learning Applications in Additive Manufacturing; from Design to Manufacturing and Property Control. Arch. Comput. Methods Eng. 2022, 29(7), 5663–5721. DOI: https://doi.org/10.1007/s11831-022-09786-9.
  • Zhang, Y.; Safdar, M.; Xie, J.; Li, J.; Sage, M.; Zhao, Y. F. A Systematic Review on Data of Additive Manufacturing for Machine Learning Applications: The Data Quality, Type, Preprocessing, and Management; Springer US: 2022. DOI: 10.1007/s10845-022-02017-9.
  • Li, W.; Zhang, H.; Wang, G.; Xiong, G.; Zhao, M.; Li, G.; Li, R. Deep Learning Based Online Metallic Surface Defect Detection Method for Wire and Arc Additive Manufacturing. Robot. Comput. Integr. Manuf. 2023, 80, 102470. DOI: 10.1016/j.rcim.2022.102470.
  • Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests. Int. J. Adv. Manuf. Technol. 2015, 81(1–4), 465–481. DOI: 10.1007/s00170-015-7077-3.
  • Warsi, R.; Kazmi, K. H.; Chandra, M. Mechanical Properties of Wire and Arc Additive Manufactured Component Deposited by a CNC Controlled GMAW. Mater. Today Proc. No. November. 2021. DOI: 10.1016/j.matpr.2021.10.114.
  • Kapil, S.; Kulkarni, P.; Joshi, P.; Negi, S.; Karunakaran, K. P. Retrofitment of a CNC Machine for Omni-Directional Tungsten Inert Gas Cladding. Virtual Phys. Prototyp. 2019, 14(3), 293–306. DOI: 10.1080/17452759.2018.1552484.
  • Müller, J.; Grabowski, M.; Müller, C.; Hensel, J.; Unglaub, J.; Thiele, K.; Kloft, H.; Dilger, K. Design and Parameter Identification of Wire and Arc Additively Manufactured (WAAM) Steel Bars for Use in Construction. Metals. 2019, 9(7), 725. DOI: 10.3390/met9070725.
  • Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal Additive Manufacturing in Aerospace: A Review. Mater. Des. 2021, 209, 110008. DOI: 10.1016/j.matdes.2021.110008.
  • Taşdemir, A.; Nohut, S. An Overview of Wire Arc Additive Manufacturing (WAAM) in Shipbuilding Industry. Ships Offshore Struct. 2020, 16(7), 797–814. DOI: 10.1080/17445302.2020.1786232.
  • Blachowicz, T.; Ehrmann, G.; Ehrmann, A. Metal Additive Manufacturing for Satellites and Rockets. Appl. Sci. 2021, 11(24), 12036. DOI: 10.3390/app112412036.
  • Derekar, K. S. A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium ABSTRACT; 2018; p. 0836. DOI: 10.1080/02670836.2018.1455012.
  • Sharma, S. K.; Sharma, C. Processing Techniques, Microstructural and Mechanical Properties of Wire Arc Additive Manufactured Stainless Steel: A Review. J. Inst. Eng. Ser. C. 2022, 103(5), 1325–1339. DOI: 10.1007/s40032-022-00853-5.
  • Langelandsvik, G.; Akselsen, O. M.; Furu, T.; Roven, H. J. Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing. Mater. (Basel). 2021, 14(18), 1–26. DOI: 10.3390/ma14185370.
  • Derekar, K. S. A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium. Mater. Sci. Technol. (United Kingdom). 2018, 34(8), 895–916. DOI: 10.1080/02670836.2018.1455012.
  • Manikandan, M.; Barath Kumar, M. D. Assessment of Process, Parameters, Residual Stress Mitigation, Post Treatments and Finite Element Analysis Simulations of Wire Arc Additive Manufacturing Technique. Korean Inst. Met. Mater. 2021. DOI: 10.1007/s12540-021-01015-5.
  • Williams, S. W.; Martina, F.; Addison, A. C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + Arc Additive Manufacturing. Mater. Sci. Technol. 2016, 32(7), 641–647. DOI: https://doi.org/10.1179/1743284715Y.0000000073.
  • Ding, D.; Wu, B.; Pan, Z.; Qiu, Z.; Li, H. Wire Arc Additive Manufacturing of Ti6AL4V Using Active Interpass Cooling. Mater. Manuf. Process. 2020, 35(7), 845–851. DOI: 10.1080/10426914.2020.1732414.
  • Scotti, F. M.; Teixeira, F. R.; da Silva, L. J.; de Araújo, D. B.; Reis, R. P.; Scotti, A. Thermal Management in WAAM Through the CMT Advanced Process and an Active Cooling Technique. J. Manuf. Process. 2020, 57(May), 23–35. DOI: 10.1016/j.jmapro.2020.06.007.
  • Kapil, S.; Rajput, A. S.; Sarma, R. Hybridization in Wire Arc Additive Manufacturing. Front. Mech. Eng. 2022, 8(September), 1–19. DOI: 10.3389/fmech.2022.981846.
  • Xiong, J.; Li, Y. J.; Yin, Z. Q.; Chen, H. Determination of Surface Roughness in Wire and Arc Additive Manufacturing Based on Laser Vision Sensing. Chinese J. Mech. Eng. (English Ed. 2018, 31(4), 1–7. DOI: 10.1186/s10033-018-0276-8.
  • Wanwan, J.; Chaoqun, Z.; Shuoya, J.; Yingtao, T.; Daniel, W.; Wen, L. Wire Arc Additive Manufacturing of Stainless Steels: A Review. Appl. Sci. 2020, 10(5), 1563.
  • Zhang, Y.; Xiong, J.; Li, D.; Zhang, G. Height Control in GMA-AM Using External Wire as Controlling Variable. Mater. Manuf. Process. 2023, 38(8), 971–979. DOI: 10.1080/10426914.2022.2089892.
  • Wu, Q.; Lu, J.; Liu, C.; Shi, X.; Ma, Q.; Tang, S.; Fan, H.; Ma, S. Obtaining Uniform Deposition with Variable Wire Feeding Direction During Wire-Feed Additive Manufacturing. Mater. Manuf. Process. 2017, 32(16), 1881–1886. DOI: 10.1080/10426914.2017.1364860.
  • Lee, K.; Yi, S.; Hyun, S.; Kim, C. Review on the Recent Welding Research with Application of CNN-Based Deep Learning Part I: Models and Applications. J. Weld. Join. 2021, 39(1), 10–19. DOI: 10.5781/jwj.2021.39.1.1.
  • Lee, C.; Seo, G.; Kim, D.; Kim, M.; Shin, J. H. Development of Defect Detection Ai Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images. Appl. Sci. 2021, 11(16). DOI: 10.3390/app11167541.
  • Cho, H.-W.; Shin, S.-J.; Seo, G.-J.; Kim, D. B.; Lee, D.-H. Real-Time Anomaly Detection Using Convolutional Neural Network in Wire Arc Additive Manufacturing: Molybdenum Material. J. Mater. Process. Technol. 2022, 302, 117495. DOI: 10.1016/j.jmatprotec.2022.117495.
  • Nalajam, P. K.; Varadarajan, R. A Hybrid Deep Learning Model for Layer-Wise Melt Pool Temperature Forecasting in Wire-Arc Additive Manufacturing Process. IEEE Access. 2021, 9, 100652–100664. DOI: 10.1109/ACCESS.2021.3097177.
  • Farias, F. W. C.; da Cruz Payão Filho, J.; E Oliveira, V. H. P. M. Prediction of the Interpass Temperature of a Wire Arc Additive Manufactured Wall: FEM Simulations and Artificial Neural Network. Addit. Manuf. 2021, 48, 102387.
  • He, X.; Wang, T.; Wu, K.; Liu, H. Automatic Defects Detection and Classification of Low Carbon Steel WAAM Products Using Improved Remanence/magneto-Optical Imaging and Cost-Sensitive Convolutional Neural Network. Measurement. 2021, 173, 108633. DOI: https://doi.org/10.1016/j.measurement.2020.108633.
  • Wang, Y.; Lu, J.; Zhao, Z.; Deng, W.; Han, J.; Bai, L.; Yang, X.; Yao, J. Active Disturbance Rejection Control of Layer Width in Wire Arc Additive Manufacturing Based on Deep Learning. J. Manuf. Process. 2021, 67(March), 364–375. DOI: 10.1016/j.jmapro.2021.05.005.
  • Xia, C.; Pan, Z.; Zhang, S.; Li, H.; Xu, Y.; Chen, S. Model-Free Adaptive Iterative Learning Control of Melt Pool Width in Wire Arc Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2020, 110(7–8), 2131–2142. DOI: 10.1007/s00170-020-05998-0.
  • Wu, D.; Chen, H.; Huang, Y.; Chen, S. Online Monitoring and Model-Free Adaptive Control of Weld Penetration in VPPAW Based on Extreme Learning Machine. IEEE Trans. Ind. Inf. 2018, 15(5), 2732–2740. DOI: 10.1109/TII.2018.2870933.
  • Bacioiu, D.; Melton, G.; Papaelias, M.; Shaw, R. Automated Defect Classification of Aluminium 5083 TIG Welding Using HDR Camera and Neural Networks. J. Manuf. Process. 2019, 45(June), 603–613. DOI: 10.1016/j.jmapro.2019.07.020.
  • Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 2016; p 779–788.
  • Hussain, M. YOLO-V1 to YOLO-V8, the Rise of YOLO and Its Complementary Nature Toward Digital Manufacturing and Industrial Defect Detection. Machines. 2023, 11(7), 677. DOI: 10.3390/machines11070677.
  • Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C. L. Microsoft Coco: Common Objects in Context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13; 2014; pp 740–755.
  • Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural. Inf. Process. Syst. 2012, 60, 25.
  • Everingham, M.; Van Gool, L.; Williams, C. K. I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (Voc) Challenge. Int. J. Comput. Vis. 2010, 88(2), 303–338. DOI: 10.1007/s11263-009-0275-4.
  • Tawfik, M. M.; Nemat-Alla, M. M.; Dewidar, M. M. Enhancing the Properties of Aluminum Alloys Fabricated Using Wire and Arc Additive Manufacturing Technique - a Review. J. Mater. Res. Technol. 2021, 13, 754–768. DOI: 10.1016/j.jmrt.2021.04.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.