82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a BDD end-grinding-milling tool with dual-negative rake angle

ORCID Icon &
Pages 938-948 | Received 29 Jul 2023, Accepted 30 Oct 2023, Published online: 04 Dec 2023

References

  • Zhao, Z.; Qian, N.; Fu, Y. Coolant Condition and Spindle Power in High-Efficiency-Deep-Grinding of Nickel-Based Superalloy Profile Part. Mater. Manuf. Processes. 2022, 37(9), 1022–1034. DOI: 10.1080/10426914.2021.2001516.
  • Kingslake, R.; Johnson, R. B. Lens Design Fundamentals. Second; Academic Press (Boston): 2010; pp. 227–254. DOI: 10.1016/B978-0-12-374301-5.00012-7.
  • Lin, Y. C.; Chen, Y. F.; Lin, C. T.; Tzeng, H. J. Electrical Discharge Machining (EDM) Characteristics Associated with Electrical Discharge Energy on Machining of Cemented Tungsten Carbide. Mater. Manuf. Processes. 2008, 23(4), 391–399. DOI: 10.1080/10426910801938577.
  • Riveiro, A.; Quintero, F.; Boutinguiza, M.; Val, J. D.; Comesaña, R.; Lusquiños, F.; Pou, J. Laser Cutting: A Review on the Influence of Assist Gas. Mater. (Basel). 2019, 12(1), 157, 31. DOI: 10.3390/ma12010157.
  • Dub, S.; Lytvyn, P.; Strelchuk, V.; Nikolenko, A.; Stubrov, Y.; Petrusha, I.; Taniguchi, T.; Ivakhnenko, S. Vickers Hardness of Diamond and cBN single Crystals: AFM Approach. Crystals. 2017, 7, 369. DOI: 10.3390/cryst7120369.
  • Chen, S. T.; Jhou, W. Y. Dual-Crankshaft Out-Of-Phase Balanced Drive Mechanism Applied to High-Frequency Scraping of High-Density Microcavities Patterns. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8(4), 1163–1180. DOI: 10.1007/s40684-020-00300-9.
  • Keen, D. Extraneous Inclusions in Al/Si Alloy Pistons: Their Effect on Single Crystal and Polycrystalline Diamond Turning Tool Edges. Wear. 1975, 31, 185–188. DOI: 10.1016/0043-1648(75)90132-5.
  • Xu, J.; Li, L.; Jiang, C.; Pan, S. Study on Milling Performances of 3Y-TZP Ceramics Using PCD and PCBN Tools. Mater. Manuf. Processes. 2023, 38(12), 1495–1513. DOI: 10.1080/10426914.2022.2149792.
  • Suzuki, H.; Moriwaki, T.; Yamamoto, Y.; Goto, Y. Precision Cutting of Aspherical Ceramic Molds with Micro PCD Milling Tool. CIRP Ann. 2007, 56(1), 131–134. DOI: 10.1016/j.cirp.2007.05.033.
  • Chen, S. T.; Chang, C. H. Development of an Ultrathin BD-PCD Wheel-Tool for in-Situ Microgroove Generation on NAK80 Mold Steel. J. Mater. Process. Technol. 2013, 213(5), 740–751. DOI: 10.1016/j.jmatprotec.2012.11.027.
  • Chen, S. T.; Huang, L. W. A Micro-Energy W-EDM Power Source Based on High-Frequency Spark Erosion for Making Diamond Heat-Sink Array. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 9(5), 1267–1283. DOI: 10.1007/s40684-021-00396-7.
  • Chen, S. T.; Lin, P. A.; Chiang, C. J. A High-Frequency Electromagnetic Stamping System for High-Throughput Stamping of Microdimples. J. Mater. Process. Technol. 2022, 303, 117527–12. DOI: 10.1016/j.jmatprotec.2022.117527.
  • Chen, S. T.; Chen, C. H.; Chang, C. H. Study of High-Frequency Microspark-Erosion of Boron-Doped Polycrystalline Diamond. Diam. Relat. Mater. 2019, 94, 155–161. DOI: 10.1016/j.diamond.2019.03.010.
  • Ono, T.; Matsumura, T. Influence of Tool Inclination on Brittle Fracture in Glass Cutting with Ball End Mills. J. Mater. Process. Technol. 2008, 202(1–3), 61–69. DOI: 10.1016/j.jmatprotec.2007.08.068.
  • Ngoi, B. K. A.; Sreejith, P. S. Ductile Regime Finish Machining – A Review. Int. J. Adv. Manuf. Technol. 2000, 16(8), 547–550. DOI: 10.1007/s001700070043.
  • Yang, J.; Roa, J. J.; Schwind, M.; Odén, M.; Johansson-Jõesaar, M. P.; Esteve, J.; Llanes, L. Implementation of Advanced Characterisation Techniques for Assessment of Grinding Effects on the Surface Integrity of WC–Co Cemented Carbides. Powder Metall. 2018, 61(2), 100–105. DOI: 10.1080/00325899.2018.1436640.
  • Kumar, V. U.; Raj, D. S. Performance Analysis of Tools with Rake Face Textures Produced Using Wire-EDM in Turning AISI4340. Mater. Manuf. Processes. 2021, 36(10), 1146–1160. DOI: 10.1080/10426914.2021.1905826.
  • Xu, F.; Yuen, M. F.; He, B.; Wang, C. D.; Zhao, X. R.; Tang, X. L.; Zuo, D. W.; Zhang, W. J. Microstructure and Tribological Properties of Cubic Boron Nitride Films on Si3N4 Inserts via Boron-Doped Diamond Buffer Layers. Diam. Relat. Mater. 2014, 49, 9–13. DOI: 10.1016/j.diamond.2014.07.014.
  • Romanyuk, O.; Bartoš, I.; Gordeev, I.; Artemenko, A.; Varga, M.; Ižák, T.; Marton, M.; Jiříček, P.; Kromka, A. Electron Affinity of Undoped and Boron-Doped Polycrystalline Diamond Films. Diam. Relat. Mater. 2018, 87, 208–214. DOI: 10.1016/j.diamond.2018.06.005.
  • Suzuki, K.; Shiraishi, Y.; Nakajima, N.; Iwai, M.; Ninomiya, S.; Tanaka, Y.; Uematsu, T. Development of New PCD Made Up of Boron Doped Diamond Particles and Its Machinability by EDM. Adv. Mat. Res. 2009, 76–78, 684–689. DOI: 10.4028/www.scientific.net/AMR.76-78.684.
  • Chen, S. T.; Chiang, C. J.; Lin, P. A.; Huang, C. T. Efficient Electromagnetic Micropunching Technology for Producing Well-Ordered, High-Density Micropits. Mater. Manuf. Processes. 2022, 38(10), 1320–1330. DOI: 10.1080/10426914.2022.2075887.
  • Teng, Y. L.; Li, L.; Zhang, W.; Wang, N.; Feng, C. C.; Ren, J. H. Machining Characteristics of PCD by EDM with Cu-Ni Composite Electrode. Mater. Manuf. Processes. 2020, 35(4), 442–448. DOI: 10.1080/10426914.2020.1718700.
  • Sun, F.; Feng, J.; Li, D. Bonding of CVD Diamond Thick Films Using an Ag–Cu–Ti Brazing Alloy. J. Mater. Process. Technol. 2001, 115(3), 333–337. DOI: 10.1016/S0924-0136(01)01005-6.
  • Chen, S. T.; Jiang, Z. H. A force controlled grinding-milling technique for quartz-glass micromachining. J. Mater. Process. Technol. 2015, 216, 206–215. DOI: 10.1016/j.jmatprotec.2014.09.017.
  • Zhang, B.; Howes, T. D. Subsurface Evaluation of Ground Ceramics. CIRP Ann. 1995, 44(1), 263–266. DOI: 10.1016/S0007-8506(07)62322-1.
  • Wei, Y.; Kim, M. R.; Lee, D. W.; Park, C.; Park, S. S. Effects of Micro Textured Sapphire Tool Regarding Cutting Forces in Turning Operations. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4(2), 141–147. DOI: 10.1007/s40684-017-0017-y.
  • Sugihara, T.; Enomoto, T. Performance of Cutting Tools with Dimple Textured Surfaces: A Comparative Study of Different Texture Patterns. Precis. Eng. 2017, 49, 52–60. DOI: 10.1016/j.precisioneng.2017.01.009.
  • Machado, A. R.; da Silva, L. R. R.; de Souza, F. C. R.; Davis, R.; Pereira, L. C.; Sales, W. F.; de Rossi, W.; Ezugwu, E. O. State of the Art of Tool Texturing in Machining. J. Mater. Process. Technol. 2021, 293, 117096. DOI: 10.1016/j.jmatprotec.2021.117096.
  • Cha, D. H.; Kim, H. J.; Lee, J. K.; Kim, H. U.; Kim, S. S.; Kim, J. H. A Study of Mold Grinding and Pressing Conditions in the Molding of Aspheric Glass Lenses for Camera Phone Module. Mater. Manuf. Processes. 2008, 23(7), 683–689. DOI: 10.1080/15560350802316991.
  • Al-Aqeeli, N.; Mohammad, K.; Laoui, T.; Saheb, N. The Effect of Variable Binder Content and Sintering Temperature on the Mechanical Properties of WC–Co–VC/Cr3C2 Nanocomposites. Mater. Manuf. Processes. 2015, 30(3), 327–334. DOI: 10.1080/10426914.2014.930894.
  • Shaw, M. C. Energy Conversion in Cutting and Grinding. CIRP Ann. 1996, 45(1), 101–104. DOI: 10.1016/S0007-8506(07)63025-X.
  • Awale, A. S.; Vashista, M.; Khan Yusufzai, M. Z. Application of Eco-Friendly Lubricants in Sustainable Grinding of Die Steel. Mater. Manuf. Processes. 2020, 36(6), 702–712. DOI: 10.1080/10426914.2020.1866187.
  • Lv, T.; Xu, X.; Yu, A.; Hu, X. Oil Mist Concentration and Machining Characteristics of SiO2 Water-Based Nano-Lubricants in Electrostatic Minimum Quantity Lubrication-EMQL Milling. J. Mater. Process. Technol. 2021, 290, 116964. DOI: 10.1016/j.jmatprotec.2020.116964.
  • Sun, W.; McBride, J. W.; Hill, M. A New Approach to Characterising Aspheric Surfaces. Precis. Eng. 2010, 34(1), 171–179. DOI: 10.1016/j.precisioneng.2009.05.005.
  • Xu, J.; Li, L.; Jiang, C.; Pan, S. Study on Milling Performances of 3Y-TZP Ceramics Using PCD and PCBN Tools. Mater. Manuf. Processes. 2022, 38(12), 1495–1513. DOI: 10.1080/10426914.2022.2149792.
  • Farooq, M. U.; Anwar, S.; Hurairah, A. Reducing Micro-Machining Errors During Electric Discharge Machining of Titanium Alloy Using Nonionic Liquids. Mater. Manuf. Processes. 2023. DOI: 10.1080/10426914.2023.2236199.
  • Sommer, C. Non-Traditional Machining Handbook. Advance Publishing, Inc. 2000, 117–124.
  • Singh, Y.; Singh, N. K.; Ram, M. Eds. Advanced Manufacturing Processes. 1st CRC Press: 2022; DOI: 10.1201/9781003220237.
  • Yan, X.; Wei, J.; An, K.; Liu, J.; Chen, L.; Zheng, Y.; Zhang, X.; Li, C. High Temperature Surface Graphitization of CVD Diamond Films and Analysis of the Kinetics Mechanism. Diam. Relat. Mater. 2021, 120, 108647. DOI: 10.1016/j.diamond.2021.108647.
  • Jiang, M.; Li, L.; Sun, X.; Wang, W. Research on the Mechanism and Process of EDM of Polycrystalline Diamond. Res. Sq. 2022. DOI: 10.21203/rs.3.rs-1935113/v1.
  • Cheng, C. L.; Chia, C. T.; Chiu, C. C.; Lin, I. N. Time-Dependent in-Situ Raman Observation of Atomic Hydrogen Etching on Diamond-Like Carbon Films. Diam. Relat. Mater. 2002, 11(2), 262–267. DOI: 10.1016/S0925-9635(01)00695-1.
  • Effendi, Y.; Prayogo, A.; Syaiful, S.; Djaeni, M.; Yohana, E. Effect of Perforated Concave Delta Winglet Vortex Generators on Heat Transfer and Flow Resistance Through the Heated Tubes in the Channel. Exp. Heat Transf. 2021, 35(5), 553–576. DOI: 10.1080/08916152.2021.1919245.
  • Cengel, Y. A. Heat and Mass Transfer, a Practical Approach, 3rd. McGraw-Hill. 2006, 74–77.
  • Griffith, A. A. The Phenomena of Rupture and Flow in Solids. Phil. Trans. R. Soc. Lond. A. 1921, 221, 163–197. DOI: 10.1098/rsta.1921.0006.
  • Chen, S. T.; Chen, Y. Y. Microgroove Grinding of Monocrystalline Diamond Using Medium-Frequency Vibration-Assisted Grinding with Self-Sensing Grinding Force Technique. J. Mater. Process. Technol. 2020, 282, 116686–14. DOI: 10.1016/j.jmatprotec.2020.116686.
  • Tamiloli, N.; Venkatesan, J.; Raja Raghu Vamsi Krishna, P.; Sampath Kumar, T. Time Domain and Frequency Domain of Coated Milling Inserts Using FFT Spectrum. Mater. Manuf. Processes. 2022, 37(16), 1882–1892. DOI: 10.1080/10426914.2022.2065012.
  • Kanungo, S. B.; Mishra, S. K. Thermal Dehydration and Decomposition of FeCl3·xH2O. J. Therm. Anal. 1996, 46(5), 1487–1500. DOI: 10.1007/BF01979262.
  • Shrivastava, P. K.; Dubey, A. K. Intelligent Modeling and Multiobjective Optimization of Electric Discharge Diamond Grinding. Mater. Manuf. Processes. 2013, 28(9), 1036–1041. DOI: 10.1080/10426914.2012.700153.
  • Chen, S. T.; Hu, C. H. Online Discharge Sharpening System and Method Thereof. Intellectual Property Office, Ministry of Economic Affairs, Taiwan. Pat. Invention. 2021, (I), 715298.
  • Lee, E. S. A Study on the Mirror-Like Grinding of Die Steel with Optimum In-Process Electrolytic Dressing. J. Mater. Process. Technol. 2000, 100(1), 200–208. DOI: 10.1016/S0924-0136(99)00462-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.