476
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Micromachining of alumina ceramic for microsystems applications: a systematic review, challenges and future opportunities

, & ORCID Icon
Pages 892-924 | Received 11 Apr 2023, Accepted 25 Sep 2023, Published online: 05 Dec 2023

References

  • Abyzov, A. M. Aluminum Oxide and Alumina Ceramics (Review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3. Refract. Ind. Ceram. 2019, 60(1), 24–32. DOI: https://doi.org/10.1007/s11148-019-00304-2.
  • Liu, Z.; Liang, J.; Su, S.; Zhang, C.; Li, J.; Yang, M.; Cao, S.; Zhou, H.; Zhao, K.; Wang, D. Preparation of Defect-Free Alumina Insulation Film Using Layer-By-Layer Electrohydrodynamic Jet Deposition for High Temperature Applications. Ceram. Int. 2021, 47(10), 14498–14505. DOI: 10.1016/j.ceramint.2021.02.029.
  • Induja, I. J.; Surendran, K. P.; Varma, M. R.; Sebastian, M. T. Low κ, Low Loss Alumina-Glass Composite with Low CTE for LTCC Microelectronic Applications. Ceram. Int. 2017, 43(1), 736–740. DOI: 10.1016/j.ceramint.2016.10.002.
  • Orlova, A. I.; Ojovan, M. I. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization. Materials. 2019, 12(16), 2638. DOI: 10.3390/ma12162638.
  • Carvalho, A.; Grenho, L.; Fernandes, M. H.; Daskalova, A.; Trifonov, A.; Buchvarov, I.; Monteiro, F. J. Femtosecond Laser Microstructuring of Alumina Toughened Zirconia for Surface Functionalization of Dental Implants. Ceram. Int. 2020, 46(2), 1383–1389. DOI: 10.1016/j.ceramint.2019.09.101.
  • Medvedovski, E. Wear-Resistant Engineering Ceramics. Wear. 2001, 249(9), 821–828. DOI: 10.1016/S0043-1648(01)00820-1.
  • Manan, A.; Qazi, I. Dielectric Properties of Ceramics for Microwave and Millimeterwave Applications. In 2013 International Conference on Aerospace Science & Engineering (ICASE); IEEE, 2013; pp 1–7. 10.1109/ICASE.2013.6785564.
  • Silva, M. V.; Stainer, D.; Al-Qureshi, H. A.; Montedo, O. R. K.; Hotza, D. Alumina-Based Ceramics for Armor Application: Mechanical Characterization and Ballistic Testing. J. Ceram. 2014, 2014, 1–6. DOI: 10.1155/2014/618154.
  • Benitez, T.; Gómez, S.; de Oliveira, A. P. N.; Travitzky, N.; Hotza, D. Transparent Ceramic and Glass-Ceramic Materials for Armor Applications. Ceram. Int. 2017, 43(16), 13031–13046. DOI: 10.1016/j.ceramint.2017.07.205.
  • Krishnan, S. V.; Ambalam, M. M.; Venkatesan, R.; Mayandi, J.; Venkatachalapathy, V. Technical Review: Improvement of Mechanical Properties and Suitability Towards Armor Applications – Alumina Composites. Ceram. Int. 2021, 47(17), 23693–23701. DOI: 10.1016/j.ceramint.2021.05.146.
  • Medesi, A. J.; Nötzel, D.; Hanemann, T. PVB/PEG-Based Feedstocks for Injection Molding of Alumina Microreactor Components. Materials. 2019, 12(8), 1219. DOI: 10.3390/ma12081219.
  • Schmidt, S. A.; Kumar, N.; Zhang, B.; Eränen, K.; Murzin, D. Y.; Salmi, T. Preparation and Characterization of Alumina-Based Microreactors for Application in Methyl Chloride Synthesis. Ind. Eng. Chem. Res. 2012, 51(12), 4545–4555. DOI: 10.1021/ie202922x.
  • Min, C.; Yang, X.; Xue, M.; Li, Q.; Wang, W.; Mei, X. Micromachining Porous Alumina Ceramic for High Quality Trimming of Turbine Blade Cores via Double Femtosecond Laser Scanning. Ceram. Int. 2021, 47(1), 461–469. DOI: 10.1016/j.ceramint.2020.08.153.
  • Tariq, F.; Haswell, R.; Lee, P. D.; McComb, D. W. Characterization of Hierarchical Pore Structures in Ceramics Using Multiscale Tomography. Acta. Mater. 2011, 59(5), 2109–2120. DOI: 10.1016/j.actamat.2010.12.012.
  • Huo, C.; Tian, X.; Nan, Y.; Li, D. Hierarchically Porous Alumina Ceramic Catalyst Carrier Prepared by Powder Bed Fusion. J. Eur. Ceram. Soc. 2020, 40(12), 4253–4264. DOI: 10.1016/j.jeurceramsoc.2020.03.059.
  • Jia, T.; Mo, S.; Wang, J.; Dong, B.; Long, F.; Wang, W.; Ju, L. Insight into the High Temperature Performances of Alumina Foams. Ceram. Int. 2021, 47(20), 29006–29010. DOI: 10.1016/j.ceramint.2021.07.062.
  • Fischer, H.; Niedhart, C.; Kaltenborn, N.; Prange, A.; Marx, R.; Niethard, F. U.; Telle, R. Bioactivation of Inert Alumina Ceramics by Hydroxylation. Biomaterials. 2005, 26(31), 6151–6157. DOI: 10.1016/j.biomaterials.2005.04.038.
  • Eickenscheidt, M.; Langenmair, M.; Dbouk, A.; Nötzel, D.; Hanemann, T.; Stieglitz, T. 3D-Printed Hermetic Alumina Housings. Materials. 2021, 14(1), 200. DOI: 10.3390/ma14010200.
  • Li, H.; Wu, R.; Liu, H.; Han, L.; Yuan, W.; Hua, Z.; Fan, S.; Wu, Y. A Novel Catalytic-Type Gas Sensor Based on Alumina Ceramic Substrates Loaded with Catalysts and Printed Electrodes. Chin. J. Anal. Chem. 2021, 49(11), 93–101. DOI: 10.1016/J.CJAC.2021.09.002.
  • Green, R. A.; Guenther, T.; Jeschke, C.; Jaillon, A.; Yu, J. F.; Dueck, W. F.; Lim, W. W.; Henderson, W. C.; Vanhoestenberghe, A.; Lovell, N. H., et al. Integrated Electrode and High Density Feedthrough System for Chip-Scale Implantable Devices. Biomaterials. 2013, 34(26), 6109–6118. DOI: 10.1016/j.biomaterials.2013.04.054.
  • Nakamura, S.; Kobayashi, M.; Ito, H.; Nakamura, K.; Ueo, T.; Nakamura, T. The Bi-Surface Total Knee Arthroplasty: Minimum 10-Year Follow-Up Study. Knee. 2010, 17(4), 274–278. DOI: 10.1016/j.knee.2010.02.015.
  • Yang, J.; Yu, J.; Cui, Y.; Huang, Y. New Laser Machining Technology of Al2O3 Ceramic with Complex Shape. Ceram. Int. 2012, 38(5), 3643–3648. DOI: 10.1016/j.ceramint.2012.01.003.
  • Taylor Ceramic Engineering Ceramic Solutions For a Range Of Applications | Products https://www.taylorceramicengineering.com/ceramic-solutions/ (accessed Jan 30, 2023).
  • Zandinejad, A.; Revilla-León, M.; Methani, M. M.; Nasiry Khanlar, L.; Morton, D. The Fracture Resistance of Additively Manufactured Monolithic Zirconia Vs. Bi-Layered Alumina Toughened Zirconia Crowns When Cemented to Zirconia Abutments. Evaluating the Potential of 3D Printing of Ceramic Crowns: An in vitro Study. Dent. J. (Basel). 2021, 9(10), 115. DOI: 10.3390/dj9100115.
  • Kuscer, D.; Bantan, I.; Hrovat, M.; Malič, B. The Microstructure, Coefficient of Thermal Expansion and Flexural Strength of Cordierite Ceramics Prepared from Alumina with Different Particle Sizes. J. Eur. Ceram. Soc. 2017, 37(2), 739–746. DOI: 10.1016/j.jeurceramsoc.2016.08.032.
  • Wang, S.; Zhou, D.; Hou, Z. Lamination of Green Ceramic Tapes by Applying Pressures Directly at Ambient Temperature. Mater. Manuf. Processes. 2014, 29(6), 759–764. DOI: 10.1080/10426914.2014.901535.
  • Liu, X.; Wang, S.; Zhou, L.; Zhou, D.; Hou, Z. Co-Firing Characteristics of Cordierite Tapes with Ag/Pd for High Frequency Chip Inductors. Mater. Manuf. Processes. 2015, 30(1), 133–138. DOI: 10.1080/10426914.2014.952043.
  • Sahoo, S.; Kumar, A.; Dhindaw, B. K.; Ghosh, S. High Speed Twin Roll Casting of Aluminum-Copper Strips with Layered Structure. Mater. Manuf. Processes. 2012, 28(1), 61–65. DOI: 10.1080/10426914.2012.700161.
  • Ghosh, S.; Guha, A.; Krishna, K. M.; Mukhopadhyay, A. K.; Maiti, H. S. Tape Cast Multilayer Composite of Nano Zirconia with High Toughness. Mater. Manuf. Processes. 2006, 21(7), 662–668. DOI: 10.1080/10426910600611680.
  • Cui, X.; Zhou, J.; Li, B.; Tong, Z. Co-Firing Behavior and Interfacial Structure of BaO–TiO 2 –B 2 O 3 –SiO 2 Glass–Ceramics/nicuzn Ferrite Composites. Mater. Manuf. Processes. 2007, 22(2), 251–255. DOI: 10.1080/10426910601134088.
  • Hart, N.; Brandon, N.; Shemilt, J. Environmental Evaluation of Thick Film Ceramic Fabrication Techniques for Solid Oxide Fuel Cells. Mater. Manuf. Processes. 2000, 15(1), 47–64. DOI: 10.1080/10426910008912972.
  • Li, H.; Liu, Y.; Liu, Y.; Zeng, Q.; Hu, K.; Lu, Z.; Liang, J. Effect of Debinding Temperature Under an Argon Atmosphere on the Microstructure and Properties of 3D-Printed Alumina Ceramics. Mater. Charact. 2020, 168, 110548. DOI: 10.1016/j.matchar.2020.110548.
  • Mahmoudian, M.; Poursattar Marjani, A.; Hasanzadeh, R.; Moradian, M.; Mamaghani Shishavan, S. Optimization of Mechanical Properties of in situ Polymerized Poly(methyl Methacrylate)/Alumina Nanoparticles Nanocomposites Using Taguchi Approach. Polym. Bull. 2020, 77(6), 2837–2854. DOI: 10.1007/s00289-019-02885-x.
  • Bai, Y.; Shi, Y.; Zhou, S.; Zou, H.; Liang, M. A Concurrent Enhancement of Both In‐Plane and Through‐Plane Thermal Conductivity of Injection Molded Polycarbonate/Boron Nitride/Alumina Composites by Constructing a Dense Filler Packing Structure. Macromol. Mater. Eng. 2021, 306(9), 2100267. DOI: 10.1002/mame.202100267.
  • Liu, S.; Ye, F.; Liu, L.; Liu, Q.; Li, J. Preparation of Aluminum Nitride Ceramics by Aqueous Tape Casting. Mater. Manuf. Processes. 2015, 30(5), 605–610. DOI: 10.1080/10426914.2014.973592.
  • Sadik, C.; Amrani, I.-E.-E.; Albizane, A. Processing and Characterization of Alumina–Mullite Ceramics. J. Asian Ceram. Soc. 2014, 2(4), 310–316. DOI: 10.1016/j.jascer.2014.07.006.
  • Li, Y.; Hu, Y.; Cong, W.; Zhi, L.; Guo, Z. Additive Manufacturing of Alumina Using Laser Engineered Net Shaping: Effects of Deposition Variables. Ceram. Int. 2017, 43(10), 7768–7775. DOI: 10.1016/j.ceramint.2017.03.085.
  • Rueschhoff, L.; Costakis, W.; Michie, M.; Youngblood, J.; Trice, R. Additive Manufacturing of Dense Ceramic Parts via Direct Ink Writing of Aqueous Alumina Suspensions. Int. J. Appl. Ceram. Technol. 2016, 13(5), 821–830. DOI: 10.1111/ijac.12557.
  • Curto, H.; Thuault, A.; Jean, F.; Violier, M.; Dupont, V.; Hornez, J.-C.; Leriche, A. Coupling Additive Manufacturing and Microwave Sintering: A Fast Processing Route of Alumina Ceramics. J. Eur. Ceram. Soc. 2020, 40(7), 2548–2554. DOI: 10.1016/j.jeurceramsoc.2019.11.009.
  • Snel, M. D.; de with, G.; Snijkers, F.; Luyten, J.; Kodentsov, A. Aqueous Tape Casting of Reaction Bonded Aluminium Oxide (RBAO). J. Eur. Ceram. Soc. 2007, 27(1), 27–33. DOI: 10.1016/j.jeurceramsoc.2006.02.034.
  • Maleksaeedi, S.; Eng, H.; Wiria, F. E.; Ha, T. M. H.; He, Z. Property Enhancement of 3D-Printed Alumina Ceramics Using Vacuum Infiltration. J. Mater. Process. Technol. 2014, 214(7), 1301–1306. DOI: 10.1016/j.jmatprotec.2014.01.019.
  • Schwentenwein, M.; Homa, J. Additive Manufacturing of Dense Alumina Ceramics. Int. J. Appl. Ceram. Technol. 2015, 12(1), 1–7. DOI: 10.1111/ijac.12319.
  • Li, Z.; Chen, Z.; Liu, J.; Fu, Y.; Liu, C.; Wang, P.; Jiang, M.; Lao, C. Additive Manufacturing of Lightweight and High-Strength Polymer-Derived SiOc Ceramics. Virtual Phys. Prototyp. 2020, 15(2), 163–177. DOI: 10.1080/17452759.2019.1710919.
  • Hesse, H.; Özcan, M. A Review on Current Additive Manufacturing Technologies and Materials Used for Fabrication of Metal-Ceramic Fixed Dental Prosthesis. J. Adhes. Sci. Technol. 2021, 35(23), 2529–2546. DOI: 10.1080/01694243.2021.1899699.
  • Porwal, R. K.; Chandra, U.; Misra, R. Comprehending and Optimising Slurry Behaviour Characteristics of Ceramics in Additive Manufacturing. Adv. Mater. Process. Technol. 2022, 8(sup3), 1664–1698. DOI: 10.1080/2374068X.2021.1948703.
  • Li, H.; Song, L.; Sun, J.; Ma, J.; Shen, Z. Dental Ceramic Prostheses by Stereolithography-Based Additive Manufacturing: Potentials and Challenges. Adv. Appl. Ceram. 2019, 118(1–2), 30–36. DOI: 10.1080/17436753.2018.1447834.
  • Ferrage, L.; Bertrand, G.; Lenormand, P.; Grossin, D.; Ben-Nissan, B. A Review of the Additive Manufacturing (3DP) of Bioceramics: Alumina, Zirconia (PSZ) and Hydroxyapatite. J. Aust. Ceram. Soc. 2017, 53(1), 11–20. DOI: https://doi.org/10.1007/s41779-016-0003-9.
  • Gongora-Rubio, M. R.; Espinoza-Vallejos, P.; Sola-Laguna, L.; Santiago-Avilés, J. J. Overview of Low Temperature Co-Fired Ceramics Tape Technology for Meso-System Technology (MsSt). Sens. Actuators A Phys. 2001, 89(3), 222–241. DOI: 10.1016/S0924-4247(00)00554-9.
  • Sebastian, M. T.; Wang, H.; Jantunen, H. Low Temperature Co-Fired Ceramics with Ultra-Low Sintering Temperature: A Review. Curr. Opin. Solid State Mater. Sci. 2016, 20(3), 151–170. DOI: 10.1016/j.cossms.2016.02.004.
  • Jurków, D.; Maeder, T.; Dąbrowski, A.; Zarnik, M. S.; Belavič, D.; Bartsch, H.; Müller, J. Overview on Low Temperature Co-Fired Ceramic Sensors. Sens. Actuators A Phys. 2015, 233, 125–146. DOI: 10.1016/j.sna.2015.05.023.
  • Peterson, K. A.; Patel, K. D.; Ho, C. K.; Rohde, S. B.; Nordquist, C. D.; Walker, C. A.; Wroblewski, B. D.; Okandan, M. Novel Microsystem Applications with New Techniques in Low-Temperature Co-Fired Ceramics. Int. J. Appl. Ceram. Technol. 2005, 2(5), 345–363. DOI: 10.1111/j.1744-7402.2005.02039.x.
  • Zhou, J. Towards Rational Design of Low-Temperature Co-Fired Ceramic (LTCC) Materials. J. Adv. Ceram. 2012, 1(2), 89–99. DOI: https://doi.org/10.1007/s40145-012-0011-3.
  • Lin, Y.; Zhu, Z.; Yang, H. Low-Temperature Sintering and Electromagnetic Properties of NiCuzn/BaFe 0.5 Nb 0.5 O 3 Composites. Mater. Manuf. Processes. 2011, 26(4), 632–635. DOI: 10.1080/10426914.2010.489627.
  • Zhong, Z. W.; Arulvanan, P.; Ang, C. F. Effects of Sintering Process Conditions on Size Shrinkages of Low-Temperature Co-Fired Ceramic Substrate. Mater. Manuf. Processes. 2006, 21(8), 721–726. DOI: 10.1080/10426910600727833.
  • Zhong, Z. W.; Arulvanan, P.; Goh, C. K. Effects of Four Key Process Variables on Size Shrinkages of Low Temperature Co-Fired Ceramic Substrates. Mater. Manuf. Processes. 2007, 23(1), 21–28. DOI: 10.1080/10426910701524394.
  • Zhong, Z. W.; Arulvanan, P.; Goh, C. K. Effects of Key Process Conditions on Warpage and via Protrusion of LTCC Substrate. Mater. Manuf. Processes. 2008, 23(2), 182–187. DOI: 10.1080/10426910701774726.
  • Tseng, B.-C.; Wu, L.-K. Design of Miniaturized Common-Mode Filter by Multilayer Low-Temperature Co-Fired Ceramic. IEEE Trans. Electromagn. Compat. 2004, 46(4), 571–579. DOI: 10.1109/TEMC.2004.837681.
  • Mohanram, A.; Lee, S.-H.; Messing, G. L.; Green, D. J. Constrained Sintering of Low-Temperature Co-Fired Ceramics. J. Am. Ceram. Soc. 2006, 89(6), 1923–1929. DOI: 10.1111/j.1551-2916.2006.01079.x.
  • Vasudev, A.; Kaushik, A.; Jones, K.; Bhansali, S. Prospects of Low Temperature Co-Fired Ceramic (LTCC) Based Microfluidic Systems for Point-Of-Care Biosensing and Environmental Sensing. Microfluid. Nanofluidics. 2013, 14(3–4), 683–702. DOI: 10.1007/s10404-012-1087-3.
  • Sim, J.-K.; Ashok, K.; Ra, Y.-H.; Im, H.-C.; Baek, B.-J.; Lee, C.-R. Characteristic Enhancement of White LED Lamp Using Low Temperature Co-Fired Ceramic-Chip on Board Package. Curr. Appl. Phys. 2012, 12(2), 494–498. DOI: 10.1016/j.cap.2011.08.008.
  • Hao, S.-Z.; Zhou, D.; Pang, L.-X.; Dang, M.-Z.; Sun, S.-K.; Zhou, T.; Trukhanov, S.; Trukhanov, A.; Sombra, A. S. B.; Li, Q., et al. Ultra-Low Temperature Co-Fired Ceramics with Adjustable Microwave Dielectric Properties in the Na 2 O–Bi 2 O 3 –MoO 3 Ternary System: A Comprehensive Study. J. Mater. Chem. C. 2022, 10(6), 2008–2016.
  • Mohanram, A.; Messing, G. L.; Green, D. J. Densification and Sintering Viscosity of Low-Temperature Co-Fired Ceramics. J. Am. Ceram. Soc. 2005, 88(10), 2681–2689. DOI: 10.1111/j.1551-2916.2005.00497.x.
  • Zhang, H.-W.; Li, J.; Su, H.; Zhou, T.-C.; Long, Y.; Zheng, Z.-L. Development and Application of Ferrite Materials for Low Temperature Co-Fired Ceramic Technology. Chin. Phys. B. 2013, 22(11), 117504. DOI: 10.1088/1674-1056/22/11/117504.
  • Gietzelt, T.; Eichhorn, L. Mechanical Micromachining by Drilling, Milling and Slotting. In Micromachining Techniques for Fabrication of Micro and Nano Structures; Kahrizi, M. Ed.; IntechOpen: Rijeka, 2012. DOI: 10.5772/34124.
  • Singh, R. P.; Singhal, S. Investigation of Machining Characteristics in Rotary Ultrasonic Machining of Alumina Ceramic. Mater. Manuf. Processes. 2017, 32(3), 309–326. DOI: 10.1080/10426914.2016.1176190.
  • Liu, J.; Camfield, R. Machinability Experimental Study of Sintered Alumina (Al 2 O 3) Ceramics Material by Chemical Vapor Deposition Diamond Coating Milling Tools. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2015, 229(9), 1535–1546. DOI: 10.1177/0954405414539496.
  • Nanda, B. K.; Dhupal, D.; Buda, D.; Das, S. R. Abrasive Jet Drilling of Alumina Ceramic with Pressurized-Fluidized Bed Set-Up. Mater. Today Proc. 2018, 5(5), 12570–12578. DOI: 10.1016/j.matpr.2018.02.239.
  • Wang, J.; Guo, D. M. The Cutting Performance in Multipass Abrasive Waterjet Machining of Industrial Ceramics. J. Mater. Process. Technol. 2003, 133(3), 371–377. DOI: 10.1016/S0924-0136(02)01125-1.
  • Shanmugam, D. K.; Wang, J.; Liu, H. Minimisation of Kerf Tapers in Abrasive Waterjet Machining of Alumina Ceramics Using a Compensation Technique. Int. J. Mach. Tools Manuf. 2008, 48(14), 1527–1534. DOI: 10.1016/j.ijmachtools.2008.07.001.
  • Saurabh, S.; Tiwari, T.; Nag, A.; Dixit, A.; Mandal, N.; Das, A.; Mandal, A.; Srivastava, A. K. Processing of Alumina Ceramics by Abrasive Waterjet- an Experimental Study. Mater. Today Proc. 2018, 5(9), 18061–18069. DOI: 10.1016/j.matpr.2018.06.140.
  • Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology; Elsevier, 2015. DOI: 10.1016/C2014-0-00027-5.
  • Lee, D. G.; Lee, H. G.; Kim, P. J.; Bang, K. G. Micro-Drilling of Alumina Green Bodies with Diamond Grit Abrasive Micro-Drills. Int. J. Mach. Tools Manuf. 2003, 43(6), 551–558. DOI: 10.1016/S0890-6955(03)00021-X.
  • Kang, C.; Liang, F.; Shen, G.; Wu, D.; Fang, F. Study of Micro-Dimples Fabricated on Alumina-Based Ceramics Using Micro-Abrasive Jet Machining. J. Mater. Process. Technol. 2021, 297, 117181. DOI: 10.1016/j.jmatprotec.2021.117181.
  • Pandey, H.; Singh, T.; Dixit, P. Formation of High Aspect Ratio Through-Glass Vias by the Combination of Ultrasonic Micromachining and Copper Electroplating. J. Manuf. Process. 2022, 82, 569–584. DOI: 10.1016/j.jmapro.2022.08.030.
  • Tang, M.; Cheng, X.; Li, Y.; Zheng, G.; Liu, H.; Dong, R. Experimental Study of a New Micromilling Process for Vortex Curved Thin Walls. Int. J. Adv. Manuf. Technol. 2023, 126(5–6), 2595–2605. DOI: https://doi.org/10.1007/s00170-023-11298-0.
  • Mohanty, S.; Rameshbabu, A. P.; Dhara, S. Net Shape Forming of Green Alumina via CNC Machining Using Diamond Embedded Tool. Ceram. Int. 2013, 39(8), 8985–8993. DOI: 10.1016/j.ceramint.2013.04.099.
  • Chang, D.-Y.; Lin, S.-Y. Tool Wear, Hole Characteristics, and Manufacturing Tolerance in Alumina Ceramic Microdrilling Process. Mater. Manuf. Processes. 2012, 27(3), 306–313. DOI: 10.1080/10426914.2011.577881.
  • Yan, B. H.; Huang, F. Y.; Chow, H. M. Study on the Turning Characteristics of Alumina-Based Ceramics. J. Mater. Process. Technol. 1995, 54(1–4), 341–347. DOI: https://doi.org/10.1016/0924-0136(95)01798-4.
  • Okada, M.; Yoshimoto, F.; Watanabe, H.; Nikawa, M. Drilling of Alumina and Zirconia Ceramics Using Diamond-Coated Carbide Drill. J. Manuf. Process. 2023, 89, 410–429. DOI: 10.1016/j.jmapro.2023.01.055.
  • Kumar Sahu, S.; Thrinadh, J.; Datta, S. Parametric Studies on SiC-Abrasive Jet Assisted Machining of Alumina Ceramics. Mater. Today Proc. 2021, 44, 1643–1652. DOI: 10.1016/j.matpr.2020.11.823.
  • Wakuda, M.; Yamauchi, Y.; Kanzaki, S. Effect of Workpiece Properties on Machinability in Abrasive Jet Machining of Ceramic Materials. Precis. Eng. 2002, 26(2), 193–198. DOI: 10.1016/S0141-6359(01)00114-3.
  • Wakuda, M.; Yamauchi, Y.; Kanzaki, S. Surface Finishing of Alumina Ceramics by Means of Abrasive Jet Machining. J. Am. Ceram. Soc. 2002, 85(5), 1306–1308. DOI: https://doi.org/10.1111/j.1151-2916.2002.tb00265.x.
  • Wakuda, M.; Yamauchi, Y.; Kanzaki, S. Material Response to Particle Impact during Abrasive Jet Machining of Alumina Ceramics. J. Mater. Process. Technol. 2003, 132(1–3), 177–183. DOI: https://doi.org/10.1016/S0924-0136(02)00848-8.
  • Xu, S.; Wang, J. A Study of Abrasive Waterjet Cutting of Alumina Ceramics with Controlled Nozzle Oscillation. Int. J. Adv. Manuf. Technol. 2006, 27(7–8), 693. DOI: 10.1007/s00170-004-2256-7.
  • Wang, J.; Kuriyagawa, T.; Huang, C. Z. An Experimental Study to Enhance the Cutting Performance in Abrasive Waterjet Machining. Mach. Sci. Technol. 2003, 7(2), 191–207. DOI: 10.1081/MST-120022777.
  • Siores, E.; Wong, W. C. K.; Chen, L.; Wager, J. G. Enhancing Abrasive Waterjet Cutting of Ceramics by Head Oscillation Techniques. CIRP Annals. 1996, 45(1), 327–330. DOI: 10.1016/S0007-8506(07)63073-X.
  • Liu, D.; Zhu, H.; Huang, C.; Wang, J.; Yao, P. Prediction Model of Depth of Penetration for Alumina Ceramics Turned by Abrasive Waterjet—Finite Element Method and Experimental Study. Int. J. Adv. Manuf. Technol. 2016, 87(9–12), 2673–2682. DOI: 10.1007/s00170-016-8600-x.
  • Bhattacharyya, B. Electrochemical Micromachining for Nanofabrication. MEMS Nanotechnol. 2015. DOI: 10.1016/C2014-0-00027-5.
  • Meng, F.; Yu, T.; Wiercigroch, M.; Wang, Z.; Cui, Z.; Liang, Y.; Wang, Z.; Zhao, J. Profile Prediction for Ultrasonic Vibration Polishing of Alumina Ceramics. Int. J. Mech. Sci. 2023, 252, 108360. DOI: 10.1016/j.ijmecsci.2023.108360.
  • Lan, T.; Feng, P.; Zhang, J.; Zhou, H.; Wang, J. Modeling the Load Capacity of Frequency-Tracked Rotary Ultrasonic Machining System. Int. J. Mech. Sci. 2023, 246, 108136. DOI: 10.1016/j.ijmecsci.2023.108136.
  • Li, Q.; Yuan, S.; Gao, X.; Zhang, Z.; Chen, B.; Li, Z.; Batako, A. D. L. Surface and Subsurface Formation Mechanism of SiCp/Al Composites Under Ultrasonic Scratching. Ceram. Int. 2023, 49(1), 817–833. DOI: 10.1016/j.ceramint.2022.09.055.
  • Qin, S.; Zhu, L.; Hao, Y.; Shi, C.; Wang, S.; Yang, Z. Theoretical and Experimental Investigations of Surface Generation Induced by Ultrasonic Assisted Grinding. Tribol. Int. 2023, 179, 108120. DOI: 10.1016/j.triboint.2022.108120.
  • Liu, Y.; Ma, L.; Liu, F.; Fu, B.; Yao, J. A Novel Model of Vibration Plowing Effect for Longitudinal Ultrasonic Vibration-Assisted Drilling. J. Manuf. Process. 2023, 87, 65–80. DOI: 10.1016/j.jmapro.2022.12.039.
  • Chen, F.; Bie, W.; Wang, X.; Zhao, B. Longitudinal-Torsional Coupled Rotary Ultrasonic Machining of ZrO2 Ceramics: An Experimental Study. Ceram. Int. 2022, 48(19), 28154–28162. DOI: 10.1016/j.ceramint.2022.05.398.
  • Bayat, M.; Amini, S. Investigation of Deviation and Surface Topography in Ultrasonic Vibration-Assisted Milling. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 2023, 237(2), 128–137. DOI: 10.1177/09544089221099901.
  • Shard, A.; Agarwal, R.; Gupta, V.; Garg, M. P. Influence of Ultrasonic Vibrations During Drilling of Carbon-Fiber-Reinforced Polyetherimide Composites. Appl. Acoustics. 2023, 202, 109163. DOI: 10.1016/j.apacoust.2022.109163.
  • Zhang, M.; Wang, X.; Jiao, F.; Niu, Y.; Chen, S. Residual Stresses in Ultrasonic Vibration Assistance Turning Cemented Carbide. Int. J. Adv. Manuf. Technol. 2023. DOI: 10.1007/s00170-023-11077-x.
  • YANG, Y.; ZHENG, K.; DONG, S.; SUN, L.; SUN, Z. Investigation into Temperature and Its Effects on Hole Wall Quality in Rotary Ultrasonic Countersinking of Thin-Walled CFRP/Al Stacks. J. Adv. Manuf. Sci. Technol. 2023, 3(2), 2023002–2023002. DOI: 10.51393/j.jamst.2023002.
  • Li, H.; Chen, T.; Li, H.; Zhang, Y. Influence of Ultrasonic Vibration on Machining Quality of Down/Up Grinding in Ultrasonic Vibration Assisted Grinding of Silicon Carbide. Mach. Sci. Technol. 2023, 27(1), 1–19. DOI: https://doi.org/10.1080/10910344.2023.2194958.
  • Wang, H.; Hu, Y.; Cong, W.; Burks, A. R. Rotary Ultrasonic Machining of Carbon Fiber–Reinforced Plastic Composites: Effects of Ultrasonic Frequency. Int. J. Adv. Manuf. Technol. 2019, 104(9–12), 3759–3772. DOI: 10.1007/s00170-019-04084-4.
  • Sun, Y.-J.; Chen, Z.; Ao, S.-J.; Gong, H.; Gui, S.-Y. Investigation on the Electrical Characteristics of Ultrasonic Vibration Unit in Rotary Ultrasonic Machining. Int. J. Adv. Manuf. Technol. 2023, 125(7–8), 3691–3700. DOI: 10.1007/s00170-023-10980-7.
  • Li, H.; Lin, B.; Wan, S.; Wang, Y.; Zhang, X. An Experimental Investigation on Ultrasonic Vibration-Assisted Grinding of SiO 2f/SiO 2 Composites. Mater. Manuf. Processes. 2016, 31(7), 887–895. DOI: 10.1080/10426914.2015.1090586.
  • Haashir, A.; Debnath, T.; Patowari, P. K. A Comparative Assessment of Micro Drilling in Boron Carbide Using Ultrasonic Machining. Mater. Manuf. Processes. 2020, 35(1), 86–94. DOI: 10.1080/10426914.2019.1697447.
  • Kumar, S.; Dvivedi, A. On Effect of Tool Rotation on Performance of Rotary Tool Micro-Ultrasonic Machining. Mater. Manuf. Processes. 2019, 34(5), 475–486. DOI: 10.1080/10426914.2018.1512130.
  • Jain, A. K.; Pandey, P. M. Experimental Investigations of Ceramic Machining Using Μ -Grinding and Μ -Rotary Ultrasonic Machining Processes: A Comparative Study. Mater. Manuf. Processes. 2017, 32(6), 598–607. DOI: 10.1080/10426914.2016.1198024.
  • Gohil, A.; Modi, B.; Patel, K. Effect of Amplitude of Vibration in Ultrasonic Vibration-Assisted Single Point Incremental Forming. Mater. Manuf. Processes. 2022, 37(16), 1837–1849. DOI: 10.1080/10426914.2022.2065008.
  • Zhong, Z.-W. Advanced Polishing, Grinding and Finishing Processes for Various Manufacturing Applications: A Review. Mater. Manuf. Processes. 2020, 35(12), 1279–1303. DOI: 10.1080/10426914.2020.1772481.
  • Sonia, P.; Jain, J. K.; Saxena, K. K. Influence of Ultrasonic Vibration Assistance in Manufacturing Processes: A Review. Mater. Manuf. Processes. 2021, 36(13), 1451–1475. DOI: 10.1080/10426914.2021.1914843.
  • Singh, R. P.; Kumar, N.; Gupta, A. K.; Painuly, M. Investigation into Rotary Mode Ultrasonic Drilling of Bioceramic: An Experimental Study with PSO-TLBO Based Evolutionary Optimization. World J. Eng. 2022, 19(3), 274–290. DOI: 10.1108/WJE-03-2021-0179.
  • Abdo, B. M. A.; Alkhalefah, H.; Moiduddin, K.; Abidi, M. H. Multi-Response Optimization of Processing Parameters for Micro-Pockets on Alumina Bioceramic Using Rotary Ultrasonic Machining. Materials. 2020, 13(23), 23. DOI: 10.3390/ma13235343.
  • Abdo, B. M. A.; El-Tamimi, A.; Nasr, E. A. Rotary Ultrasonic Machining of Alumina Ceramic: An Experimental Investigation of Tool Path and Tool Overlapping. Appl. Sci. 2020, 10(5), 1667. DOI: 10.3390/app10051667.
  • Abdo, B. M. A.; Anwar, S.; El-Tamimi, A. Machinability Study of Biolox Forte Ceramic by Milling Microchannels Using Rotary Ultrasonic Machining. J. Manuf. Process. 2019, 43, 175–191. DOI: 10.1016/j.jmapro.2019.05.031.
  • Alkhalefah, H. Precise Drilling of Holes in Alumina Ceramic (Al2o3) by Rotary Ultrasonic Drilling and Its Parameter Optimization Using MOGA-II. Materials. 2020, 13(5), 1059. DOI: 10.3390/ma13051059.
  • Abdo, B. M. A.; Anwar, S.; El-Tamimi, A. M.; Nasr, E. A. Experimental Analysis on the Influence and Optimization of μ-RUM Parameters in Machining Alumina Bioceramic. Materials. 2019, 12(4), 616. DOI: 10.3390/ma12040616.
  • Abdo, B. M. A.; Mian, S. H.; El-Tamimi, A.; Alkhalefah, H.; Moiduddin, K. Micromachining of Biolox Forte Ceramic Utilizing Combined Laser/Ultrasonic Processes. Materials. 2020, 13(16), 3505. DOI: 10.3390/ma13163505.
  • Singh, R. P.; Singhal, S. Rotary Ultrasonic Machining: A Review. Mater. Manuf. Processes. 2016, 31(14), 1795–1824. DOI: 10.1080/10426914.2016.1140188.
  • Singh, R. P.; Singhal, S. Rotary Ultrasonic Machining of Macor Ceramic: An Experimental Investigation and Microstructure Analysis. Mater. Manuf. Processes. 2017, 32(9), 927–939. DOI: 10.1080/10426914.2016.1198033.
  • Kumar, S.; Dvivedi, A. On Machining of Hard and Brittle Materials Using Rotary Tool Micro-Ultrasonic Drilling Process. Mater. Manuf. Processes. 2019, 34(7), 736–748. DOI: 10.1080/10426914.2019.1594255.
  • Rayat, M. S.; Gill, S. S.; Singh, R.; Sharma, L. Fabrication and Machining of Ceramic Composites — a Review on Current Scenario. Mater. Manuf. Processes. 2017, 32(13), 1451–1474. DOI: 10.1080/10426914.2017.1279301.
  • Mandegari, M.; Behbahani, S. Experimental Analysis of a Novel Rotary Ultrasonic Assisted Drilling (RUAD) Machine. Mater. Manuf. Processes. 2013, 28(4), 481–487. DOI: 10.1080/10426914.2012.727122.
  • Kumar, S.; Hansda, B.; Das, S.; Doloi, B.; Bhattacharyya, B. Micro Hole Fabrication on Quartz Using Ultrasonic Micromachining Process. Int. J. Precis. Technol. 2017, 7(2/3/4), 222. DOI: 10.1504/IJPTECH.2017.090780.
  • Zarepour, H.; Yeo, S. H. Predictive Modeling of Material Removal Modes in Micro Ultrasonic Machining. Int. J. Mach. Tools Manuf. 2012, 62, 13–23. DOI: 10.1016/j.ijmachtools.2012.06.005.
  • Wang, H.; Pei, Z. J.; Cong, W. A Feeding-Directional Cutting Force Model for End Surface Grinding of CFRP Composites Using Rotary Ultrasonic Machining with Elliptical Ultrasonic Vibration. Int. J. Mach. Tools Manuf. 2020, 152, 103540. DOI: 10.1016/j.ijmachtools.2020.103540.
  • Sindhu, D.; Thakur, L.; Chandna, P. Parameter Optimization of Rotary Ultrasonic Machining on Quartz Glass Using Response Surface Methodology (RSM). Silicon. 2020, 12(3), 629–643. DOI: 10.1007/s12633-019-00160-2.
  • Voigt, K.; Heubner, C.; Lämmel, C.; Schneider, M.; Michaelis, A. Facile Fabrication of Nanostructured Alumina Membranes. Microporous Mesoporous Mater. 2020, 302, 110207. DOI: 10.1016/j.micromeso.2020.110207.
  • Asoh, H.; Matsumoto, M.; Hashimoto, H. Effects of Ethanol on the Efficiency of the Formation of Anodic Alumina in Sulfuric Acid. Surf. Coat. Technol. 2019, 378, 124947. DOI: 10.1016/j.surfcoat.2019.124947.
  • Khan, S. A.; Shahid, S.; Nazir, M.; Kanwal, S.; Zaman, S.; Sarwar, M. N.; Haroon, S. M. Efficient Template Based Synthesis of Ni Nanorods by Etching Porous Alumina for Their Enhanced Photocatalytic Activities Against Methyl Red and Methyl Orange Dyes. J. Mol. Struct. 2019, 1184, 316–323. DOI: 10.1016/j.molstruc.2019.02.038.
  • Azevedo, J.; Fernández-García, M. P.; Magén, C.; Mendes, A.; Araújo, J. P.; Sousa, C. T. Double-Walled Iron Oxide Nanotubes via Selective Chemical Etching and Kirkendall Process. Sci. Rep. 2019, 9(1), 11994. DOI: 10.1038/s41598-019-47704-5.
  • Nakonieczny, D. S.; Slíva, A.; Paszenda, Z.; Hundáková, M.; Kratošová, G.; Holešová, S.; Majewska, J.; Kałużyński, P.; Sathish, S. K.; Simha Martynková, G. Simple Approach to Medical Grade Alumina and Zirconia Ceramics Surface Alteration via Acid Etching Treatment. Crystals (Basel). 2021, 11(10), 1232. DOI: 10.3390/cryst11101232.
  • Makino, E.; Sato, T.; Yamada, Y. Photoresist for Photochemical Machining of Alumina Ceramic. Precis. Eng. 1987, 9(3), 153–157. DOI: 10.1016/0141-6359(87)90033-X.
  • Fricke, S.; Friedberger, A.; Schmid, U. The Influence of Plasma Power on the Temperature-Dependant Conductivity and on the Wet Chemical Etch Rate of Sputter-Deposited Alumina Thin Films. Surf. Coat. Technol. 2009, 203(19), 2830–2834. DOI: 10.1016/j.surfcoat.2008.12.030.
  • Shih, I.; Qiu, C. X. Chemical Etching of Y-Cu-Ba-O Thin Films. Appl. Phys. Lett. 1988, 52(18), 1523–1524. DOI: 10.1063/1.99695.
  • Venkatesan, B. M.; Shah, A. B.; Zuo, J.-M.; Bashir, R. DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Adv. Funct. Mater. 2010, 20(8), 1266–1275. DOI: 10.1002/adfm.200902128.
  • Inkson, B. J.; Leclere, D.; Elfallagh, F.; Derby, B. The Effect of Focused Ion Beam Machining on Residual Stress and Crack Morphologies in Alumina. J. Phys.: Conf. Ser. 2006, 26, 219–222. DOI: 10.1088/1742-6596/26/1/052.
  • ELFALLAGH, F.; INKSON, B. J. Evolution of Residual Stress and Crack Morphologies During 3D FIB Tomographic Analysis of Alumina. J. Microsc. 2008, 230(2), 240–251. DOI: 10.1111/j.1365-2818.2008.01981.x.
  • Srivatsan, T. S.; Sudarshan, T. S.; Manigandan, K. Manufacturing Techniques for Materials; Srivatsan, T. S., Sudarshan, T. S., Manigandan, K.Eds.; CRC Press: 2018; DOI:10.1201/b22313
  • Chen, C. L.; Arakawa, K.; Lee, J.-G.; Mori, H. Electron-Irradiation-Induced Phase Transformation in Alumina. Scr. Mater. 2010, 63(10), 1013–1016. DOI: 10.1016/j.scriptamat.2010.07.028.
  • Bonevich, J. E.; Marks, L. D. Electron Radiation Damage of α-Alumina. Ultramicroscopy. 1991, 35(2), 161–166. DOI: 10.1016/0304-3991(91)90101-B.
  • Nakamura, R.; Ishimaru, M.; Yasuda, H.; Nakajima, H. Atomic Rearrangements in Amorphous Al2O3 Under Electron-Beam Irradiation. J. Appl. Phys. 2013, 113(6), 64312. DOI: 10.1063/1.4790705.
  • Berger, S. D.; Salisbury, I. G.; Milne, R. H.; Imeson, D.; Humphreys, C. J. Electron Energy-Loss Spectroscopy Studies of Nanometre-Scale Structures in Alumina Produced by Intense Electron-Beam Irradiation. Philos. Magaz. B. 1987, 55(3), 341–358. DOI: 10.1080/13642818708208619.
  • Elfallagh, F. A.; Inkson, B. J. 3D Tomographic Analysis of Crack Morphologies in Alumina and Glass Using FIB Microscopy. J. Phys.: Conf. Ser. 2008, 126, 012080. DOI: 10.1088/1742-6596/126/1/012080.
  • Al-Ahmari, A. M. A.; Rasheed, M. S.; Mohammed, M. K.; Saleh, T. A Hybrid Machining Process Combining Micro-EDM and Laser Beam Machining of Nickel–Titanium-based Shape Memory Alloy. Mater. Manuf. Processes. 2016, 31(4), 447–455. DOI: 10.1080/10426914.2015.1019102.
  • Ji, R.; Liu, Y.; Zhang, Y.; Wang, F.; Cai, B.; Fu, X. Single Discharge Machining Insulating Al 2 O 3 Ceramic with High Instantaneous Pulse Energy in Kerosene. Mater. Manuf. Processes. 2012, 27(6), 676–682. DOI: 10.1080/10426914.2011.602783.
  • Mohri, N.; Fukuzawa, Y.; Tani, T.; Saito, N.; Furutani, K. Assisting Electrode Method for Machining Insulating Ceramics. CIRP Annals. 1996, 45(1), 201–204. DOI: 10.1016/S0007-8506(07)63047-9.
  • Muttamara, A.; Fukuzawa, Y.; Mohri, N.; Tani, T. Effect of Electrode Material on Electrical Discharge Machining of Alumina. J. Mater. Process. Technol. 2009, 209(5), 2545–2552. DOI: 10.1016/j.jmatprotec.2008.06.018.
  • Chen, Y.-F.; Lin, Y.-J.; Lin, Y.-C.; Chen, S.-L.; Hsu, L.-R. Optimization of Electrodischarge Machining Parameters on ZrO2 Ceramic Using the Taguchi Method. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2010, 224(2), 195–205. DOI: 10.1243/09544054JEM1437.
  • Hösel, T.; Müller, C.; Reinecke, H. Spark Erosive Structuring of Electrically Nonconductive Zirconia with an Assisting Electrode. CIRP J. Manuf. Sci. Technol. 2011, 4(4), 357–361. DOI: 10.1016/j.cirpj.2011.05.005.
  • Banu, A.; Ali, M. Y.; Rahman, M. A. Micro-Electro Discharge Machining of Non-Conductive Zirconia Ceramic: Investigation of MRR and Recast Layer Hardness. Int. J. Adv. Manuf. Technol. 2014, 75(1–4), 257–267. DOI: 10.1007/s00170-014-6124-9.
  • Hösel, T.; Cvancara, P.; Ganz, T.; Müller, C.; Reinecke, H. Characterisation of High Aspect Ratio Non-Conductive Ceramic Microstructures Made by Spark Erosion. Microsyst. Technol. 2011, 17(2), 313–318. DOI: 10.1007/s00542-011-1284-0.
  • Liu, Y. H.; Li, X. P.; Ji, R. J.; Yu, L. L.; Zhang, H. F.; Li, Q. Y. Effect of Technological Parameter on the Process Performance for Electric Discharge Milling of Insulating Al2O3 Ceramic. J. Mater. Process. Technol. 2008, 208(1–3), 245–250. DOI: 10.1016/j.jmatprotec.2007.12.143.
  • Moudood, M. A.; Sabur, A.; Ali, M. Y.; Jaafar, I. H. Effect of Peak Current on Material Removal Rate for Electrical Discharge Machining of Non-Conductive Al<2O3 Ceramic. Adv. Mat. Res. 2013, 845, 730–734. DOI: 10.4028/www.scientific.net/AMR.845.730.
  • Zhang, J.; Sugioka, K.; Midorikawa, K. High-Speed Machining of Glass Materials by Laser-Induced Plasma-Assisted Ablation Using a 532-Nm Laser. Appl. Phys. A Mater. Sci. Process. 1998, 67(4), 499–501. DOI: 10.1007/s003390050810.
  • Lee, S.-J.; Kim, J.-D.; Suh, J. Microstructural Variations and Machining Characteristics of Silicon Nitride Ceramics from Increasing the Temperature in Laser Assisted Machining. Int. J. Precis. Eng. Manuf. 2014, 15(7), 1269–1274. DOI: 10.1007/s12541-014-0466-y.
  • Kim, J.-D.; Lee, S.-J.; Suh, J. Characteristics of Laser Assisted Machining for Silicon Nitride Ceramic According to Machining Parameters. J. Mech. Sci. Technol. 2011, 25(4), 995–1001. DOI: 10.1007/s12206-011-0201-x.
  • Wang, Y.; Zhang, W. Theoretical and Experimental Study on Hybrid Laser and Shaped Tube Electrochemical Machining (Laser-STEM) Process. Int. J. Adv. Manuf. Technol. 2021, 112(5–6), 1601–1615. DOI: 10.1007/s00170-020-06558-2.
  • Abdo, B. M. A.; Ahmed, N.; El-Tamimi, A. M.; Anwar, S.; Alkhalefah, H.; Nasr, E. A. Laser Beam Machining of Zirconia Ceramic: An Investigation of Micro-Machining Geometry and Surface Roughness. J. Mech. Sci. Technol. 2019, 33(4), 1817–1831. DOI: 10.1007/s12206-019-0334-x.
  • Vora, H. D.; Santhanakrishnan, S.; Harimkar, S. P.; Boetcher, S. K. S.; Dahotre, N. B. Evolution of Surface Topography in One-Dimensional Laser Machining of Structural Alumina. J. Eur. Ceram. Soc. 2012, 32(16), 4205–4218. DOI: 10.1016/J.JEURCERAMSOC.2012.06.015.
  • Behbahani, R.; Yazdani Sarvestani, H.; Fatehi, E.; Kiyani, E.; Ashrafi, B.; Karttunen, M.; Rahmat, M. Machine Learning-Driven Process of Alumina Ceramics Laser Machining. Phys. Scr. 2023, 98(1), 015834. DOI: 10.1088/1402-4896/aca3da.
  • Amsellem, W.; Yazdani Sarvestani, H.; Pankov, V.; Martinez-Rubi, Y.; Gholipour, J.; Ashrafi, B. Deep Precision Machining of SiC Ceramics by Picosecond Laser Ablation. Ceram. Int. 2023, 49(6), 9592–9606. DOI: 10.1016/j.ceramint.2022.11.129.
  • Hsiao, W.-T.; Tseng, S.-F.; Chung, C.-K.; Chen, P.-H.; Chen, M.-F. Development of Portable Laser Machining System for Laser Writing Applications. Opt. Rev. 2013, 20(2), 167–172. DOI: 10.1007/s10043-013-0027-0.
  • Bednarczyk, S.; Bechir, R.; Baclet, P. Laser Micro-Machining of Small Objects for High-Energy Laser Experiments. Appl. Phys. A Mater. Sci. Process. 1999, 69(7), S495–S500. DOI: 10.1007/s003390051450.
  • Guo, D.; Cai, K.; Yang, J.; Huang, Y. Spatter-Free Laser Drilling of Alumina Ceramics Based on Gelcasting Technology. J. Eur. Ceram. Soc. 2003, 23(8), 1263–1267. DOI: https://doi.org/10.1016/S0955-2219(02)00299-6.
  • Yan, Y.; Li, L.; Sezer, K.; Wang, W.; Whitehead, D.; Ji, L.; Bao, Y.; Jiang, Y. CO2 Laser Underwater Machining of Deep Cavities in Alumina. J. Eur. Ceram. Soc. 2011, 31(15), 2793–2807. DOI: 10.1016/J.JEURCERAMSOC.2011.06.015.
  • Zhang, H.; Xu, J. Laser Drilling Assisted with Jet Electrochemical Machining for the Minimization of Recast and Spatter. Int. J. Adv. Manuf. Technol. 2012, 62(9–12), 1055–1062. DOI: 10.1007/s00170-011-3830-4.
  • Tsai, C.-H.; Chen, H.-W. The Laser Shaping of Ceramic by a Fracture Machining Technique. Int. J. Adv. Manuf. Technol. 2004, 23(5–6), 342–349. DOI: 10.1007/s00170-003-1679-x.
  • Slătineanu, L.; Coteaţă, M.; Beşliu, I.; Dodun, O. Thermal Phenomena at the Laser Beam Machining. Int. J. Mater. Form. 2010, 3(S1), 1103–1106. DOI: 10.1007/s12289-010-0964-0.
  • Rashid, M. A. N.; Saleh, T.; Noor, W. I.; Ali, M. S. M. Effect of Laser Parameters on Sequential Laser Beam Micromachining and Micro Electro-Discharge Machining. Int. J. Adv. Manuf. Technol. 2021, 114(3–4), 709–723. DOI: 10.1007/s00170-021-06908-8.
  • Ackerl, N.; Warhanek, M.; Gysel, J.; Wegener, K. Ultrashort-Pulsed Laser Machining of Dental Ceramic Implants. J. Eur. Ceram. Soc. 2019, 39(4), 1635–1641. DOI: 10.1016/J.JEURCERAMSOC.2018.11.007.
  • Jia, X.; Li, Z.; Wang, C.; Li, K.; Zhang, L.; Ji’an, D. Study of the Dynamics of Material Removal Processes in Combined Pulse Laser Drilling of Alumina Ceramic. Opt. Laser Technol. 2023, 160, 109053. DOI: 10.1016/j.optlastec.2022.109053.
  • Gavrilov, G.; Kurkin, A.; Rusin, E.; Bazhenov, E. Laser Drilling in Alumina Ceramics Using a Combination of Laser Pulses in the Free-Running and Q-Switched Modes. Materials. 2023, 16(9), 3457. DOI: 10.3390/ma16093457.
  • Zhang, J.; Sugioka, K.; Midorikawa, K. High-Quality and High-Efficiency Machining of Glass Materials by Laser-Induced Plasma-Assisted Ablation Using Conventional Nanosecond UV, Visible, and Infrared Lasers. Appl. Phys. A Mater. Sci. Process. 1999, 69(7), S879–S882. DOI: 10.1007/s003390051551.
  • Alahmari, A. M.; Ahmed, N.; Darwish, S. Laser Beam Micro-Machining under Water Immersion. Int. J. Adv. Manuf. Technol. 2016, 83(9–12), 1671–1681. DOI: 10.1007/s00170-015-7699-5.
  • Darwish, S.; Ahmed, N.; Alahmari, A. M.; Mufti, N. A. A Comparison of Laser Beam Machining of Micro-Channels Under Dry and Wet Mediums. Int. J. Adv. Manuf. Technol. 2016, 83(9–12), 1539–1555. DOI: 10.1007/s00170-015-7658-1.
  • Anyakin, N. I.; Nayebi, M.; Kovalenko, V. S. Machining of Shaped Holes Using Focused Laser Radiation. Surf. Engin. Appl. Electrochem. 2012, 48(1), 22–27. DOI: https://doi.org/10.3103/S1068375512010024.
  • Simon, P.; Ihlemann, J. Machining of Submicron Structures on Metals and Semiconductors by Ultrashort UV-Laser Pulses. Appl. Phys. A Mater. Sci. Process. 1996, 63(5), 505–508. DOI: 10.1007/BF01571681.
  • Zhang, Q.; Wang, C.; Liu, Y.; Zhang, L.; Cheng, G. Picosecond Laser Machining of Deep Holes in Silicon Infiltrated Silicon Carbide Ceramics. J. Wuhan Univ. Technol.Mater. Sci. Ed. 2015, 30(3), 437–441. DOI: 10.1007/s11595-015-1167-9.
  • Song, H.; Dan, J.; Chen, X.; Xiao, J.; Xu, J. Experimental Investigation of Machinability in Laser-Assisted Machining of Fused Silica. Int. J. Adv. Manuf. Technol. 2018, 97(1–4), 267–278. DOI: 10.1007/s00170-018-1917-x.
  • ALUMINA Cutting - Laser Micromachining Ltd https://www.lasermicromachining.com/materials/ceramics/alumina-cutting/ (accessed Jan 16, 2023).
  • Yilbas, B. S.; Akhtar, S. S.; Karatas, C. Laser Machining of Different Diameter Holes in Alumina Ceramic: Thermal Stress Analysis. Mach. Sci. Technol. 2016, 20(3), 349–367. DOI: 10.1080/10910344.2016.1191024.
  • Kovalenko, A. F.; Konyukhov, M. V.; Sukhovei, S. B. Rational Regimes for Laser Machining of Glass and Ceramic Plates. Glass. Ceram. 2015, 72(5–6), 203–205. DOI: https://doi.org/10.1007/s10717-015-9756-9.
  • Campbell, G. R.; Islam, M. U. Laser Machining of Silicon Nitride Base Materials. Mater. Manuf. Processes. 1995, 10(3), 509–518. DOI: 10.1080/10426919508935041.
  • Jeon, Y.; Lee, C. M. Current Research Trend on Laser Assisted Machining. Int. J. Precis. Eng. Manuf. 2012, 13(2), 311–317. DOI: 10.1007/s12541-012-0040-4.
  • Chang, Y.-J.; Hung, Y.-C.; Kuo, C.-L.; Hsu, J.-C.; Ho, C.-C. Hybrid Stamping and Laser Micromachining Process for Micro-Scale Hole Drilling. Mater. Manuf. Processes. 2017, 32(15), 1685–1691. DOI: 10.1080/10426914.2017.1328115.
  • Mutlu, M. Effects of the Laser Wavelength on Drilling Process of Ceramic Using Nd: Yag Laser. J. Laser Micro/nanoeng. 2009, 4(2), 84–88. DOI: 10.2961/jlmn.2009.02.0002.
  • Mohammed, M. K.; Umer, U.; Abdulhameed, O.; Alkhalefah, H. Effects of Laser Fluence and Pulse Overlap on Machining of Microchannels in Alumina Ceramics Using an Nd: Yag Laser. Appl. Sci. 2019, 9(19), 3962. DOI: 10.3390/app9193962.
  • Knowles, M. R. H.; Rutterford, G.; Karnakis, D.; Ferguson, A. Micro-Machining of Metals, Ceramics and Polymers Using Nanosecond Lasers. Int. J. Adv. Manuf. Technol. 2007, 33(1–2), 95–102. DOI: 10.1007/s00170-007-0967-2.
  • Sola, D.; Peña, J. I. Laser Machining of Al2O3–ZrO2 (3%Y2O3) Eutectic Composite. J. Eur. Ceram. Soc. 2012, 32(4), 807–814. DOI: 10.1016/j.jeurceramsoc.2011.11.007.
  • Jia, X.; Dong, J.; Wang, H.; Aleksei, K.; Zhu, G.; Zhu, X. High-Speed Drilling of Alumina Ceramic by Sub-Microsecond Pulsed Thin Disk Laser. Opt. Express. 2020, 28(22), 33044. DOI: 10.1364/OE.404568.
  • Umer, U.; Mohammed, M. K.; Al-Ahmari, A. Multi-Response Optimization of Machining Parameters in Micro Milling of Alumina Ceramics Using Nd: Yag Laser. Measurement. 2017, 95, 181–192. DOI: 10.1016/j.measurement.2016.10.004.
  • Liu, Y.; Liu, L.; Deng, J.; Meng, R.; Zou, X.; Wu, F. Fabrication of Micro-Scale Textured Grooves on Green ZrO2 Ceramics by Pulsed Laser Ablation. Ceram. Int. 2017, 43(8), 6519–6531. DOI: 10.1016/j.ceramint.2017.02.074.
  • Wang, X. C.; Zheng, H. Y.; Chu, P. L.; Tan, J. L.; Teh, K. M.; Liu, T.; Ang, B. C. Y.; Tay, G. H. High Quality Femtosecond Laser Cutting of Alumina Substrates. Opt. Lasers Eng. 2010, 48(6), 657–663. DOI: 10.1016/j.optlaseng.2010.02.001.
  • Ren, N.; Xia, K.; Yang, H.; Gao, F.; Song, S. Water-Assisted Femtosecond Laser Drilling of Alumina Ceramics. Ceram. Int. 2021, 47(8), 11465–11473. DOI: 10.1016/j.ceramint.2020.12.274.
  • Esmail, I.; Yazdani Sarvestani, H.; Gholipour, J.; Ashrafi, B. Engineered Net Shaping of Alumina Ceramics Using Picosecond Laser. Opt. Laser Technol. 2021, 135, 106669. DOI: 10.1016/j.optlastec.2020.106669.
  • Perrie, W.; Rushton, A.; Gill, M.; Fox, P.; O’Neill, W. Femtosecond Laser Micro-Structuring of Alumina Ceramic. Appl. Surf. Sci. 2005, 248(1–4), 213–217. DOI: 10.1016/j.apsusc.2005.03.005.
  • Li, C.; Lee, S.; Nikumb, S. Femtosecond Laser Drilling of Alumina Wafers. J. Electron. Mater. 2009, 38(9), 2006–2012. DOI: 10.1007/s11664-009-0811-6.
  • Wang, X. C.; Zheng, H. Y.; Chu, P. L.; Tan, J. L.; Teh, K. M.; Liu, T.; Ang, B. C. Y.; Tay, G. H. Femtosecond Laser Drilling of Alumina Ceramic Substrates. Appl. Phys. A. 2010, 101(2), 271–278. DOI: 10.1007/s00339-010-5816-8.
  • Oosterbeek, R. N.; Ward, T.; Ashforth, S.; Bodley, O.; Rodda, A. E.; Simpson, M. C. Fast Femtosecond Laser Ablation for Efficient Cutting of Sintered Alumina Substrates. Opt. Lasers Eng. 2016, 84, 105–110. DOI: 10.1016/j.optlaseng.2016.04.007.
  • Beausoleil, C.; Yazdani Sarvestani, H.; Katz, Z.; Gholipour, J.; Ashrafi, B. Deep and High Precision Cutting of Alumina Ceramics by Picosecond Laser. Ceram. Int. 2020, 46(10), 15285–15296. DOI: 10.1016/j.ceramint.2020.03.069.
  • Cao, Q.; Wang, Z.; He, W.; Guan, Y. Fabrication of Super Hydrophilic Surface on Alumina Ceramic by Ultrafast Laser Microprocessing. Appl. Surf. Sci. 2021, 557, 149842. DOI: 10.1016/j.apsusc.2021.149842.
  • Williams, O.; Williams, M.; Liu, C.; Webb, P.; Firth, P. Laser Micromachining of Polycrystalline Alumina and Aluminium Nitride to Enable Compact Optoelectronic Interconnects. Proceedings of the Electronic Packaging Technology Conference, EPTC, 2009, 920–925. 10.1109/EPTC.2009.5416413.
  • López López, J. M.; Bakrania, A.; Coupland, J.; Marimuthu, S. Droplet Assisted Laser Micromachining of Hard Ceramics. J. Eur. Ceram. Soc. 2016, 36(11), 2689–2694. DOI: 10.1016/j.jeurceramsoc.2016.04.021.
  • Bärsch, N.; Werelius, K.; Barcikowski, S.; Liebana, F.; Stute, U.; Ostendorf, A. Femtosecond Laser Microstructuring of Hot-Isostatically Pressed Zirconia Ceramic. J. Laser Appl. 2007, 19(2), 107–115. DOI: 10.2351/1.2567454.
  • Pallav, K.; Saxena, I.; Ehmann, K. F. Comparative Assessment of the Laser-Induced Plasma Micromachining and the Ultrashort Pulsed Laser Ablation Processes. J. Micro Nanomanuf. 2014, 2(3), 1–9. DOI: 10.1115/1.4027738.
  • Pallav, K.; Saxena, I.; Ehmann, K. F. Laser-Induced Plasma Micromachining Process: Principles and Performance. J. Micro Nanomanuf. 2015, 3(3), 1–8. DOI: 10.1115/1.4030706.
  • Malhotra, R.; Saxena, I.; Ehmann, K.; Cao, J. Laser-Induced Plasma Micro-Machining (LIPMM) for Enhanced Productivity and Flexibility in Laser-Based Micro-Machining Processes. CIRP Ann. Manuf. Technol. 2013, 62(1), 211–214. DOI: 10.1016/j.cirp.2013.03.036.
  • Saxena, I.; Ehmann, K. F. Multimaterial Capability of Laser Induced Plasma Micromachining. J. Micro Nanomanuf. 2014, 2(3), 1–7. DOI: 10.1115/1.4027811.
  • Wang, X.; Huang, Y.; Xing, Y.; Fu, X.; Zhang, Z.; Ma, C. Fabrication of Micro-Channels on Al2O3/TiC Ceramics Using Picosecond Laser Induced Plasma Micromachining. J. Manuf. Process. 2019, 44(April), 102–112. DOI: 10.1016/j.jmapro.2019.05.048.
  • Appalanaidu, B.; Dvivedi, A. On Controlling of Gas Film Shape in Electrochemical Discharge Machining Process for Fabrication of Elliptical Holes. Mater. Manuf. Processes. 2021, 36(5), 558–571. DOI: 10.1080/10426914.2020.1854464.
  • Hung, J.-C.; Su, T.-K. Machining Characteristics of Diamond Grit-Coated Tools in Grinding-Aided ECDM. Mater. Manuf. Processes. 2023, 38(12), 1581–1599. DOI: https://doi.org/10.1080/10426914.2023.2165668.
  • Arab, J.; Pawar, K.; Dixit, P. Effect of Tool-Electrode Material in Through-Hole Formation Using ECDM Process. Mater. Manuf. Processes. 2021, 36(9), 1019–1027. DOI: 10.1080/10426914.2021.1885700.
  • Mishra, D. K.; Pawar, K.; Dixit, P. Effect of Tool Electrode-Workpiece Gap in the Microchannel Formation by Electrochemical Discharge Machining. ECS J. Solid State Sci. Technol. 2020, 9(3), 034011. DOI: https://doi.org/10.1149/2162-8777/ab80b1.
  • Mishra, D. K.; Singh, T.; Dixit, P. Cathode Shape Prediction for Uniform Electrochemical Dissolution of Array Tools for ECDM Applications. Mater. Manuf. Processes. 2022, 37(12), 1463–1473. DOI: 10.1080/10426914.2021.2001520.
  • Gupta, P. K.; Dvivedi, A.; Kumar, P. Effect of Pulse Duration on Quality Characteristics of Blind Hole Drilled in Glass by ECDM. Mater. Manuf. Processes. 2016, 31(13), 1740–1748. DOI: 10.1080/10426914.2015.1103857.
  • Bhargav, K. V. J.; Balaji, P. S.; Sahu, R. K.; Katiyar, J. K. Exemplary Approach Using Tool Rotation-Assisted µ-ECDM for CFRP Composites Machining. Mater. Manuf. Processes. 2023, 38(3), 271–283. DOI: 10.1080/10426914.2022.2072879.
  • Arab, J.; Dixit, P. Gas Bubbles Entrapment Mechanism in the Electrochemical Discharge Machining Involving Multi-Tip Array Electrodes. J. Manuf. Process. 2023, 99, 38–52. DOI: 10.1016/j.jmapro.2023.05.038.
  • Singh, T.; Dvivedi, A.; Shanu, A.; Dixit, P. Experimental Investigations of Energy Channelization Behavior in Ultrasonic Assisted Electrochemical Discharge Machining. J. Mater. Process. Technol. 2021, 293, 117084. DOI: 10.1016/j.jmatprotec.2021.117084.
  • Verma, A. K.; Mishra, D. K.; Pawar, K.; Dixit, P. Investigations into Surface Topography of Glass Microfeatures Formed by Pulsed Electrochemical Discharge Milling for Microsystem Applications. Microsyst. Technol. 2020, 26(6), 2105–2116. DOI: 10.1007/s00542-020-04770-4.
  • Mishra, D. K.; Arab, J.; Pawar, K.; Dixit, P. Fabrication of Deep Microfeatures in Glass Substrate Using Electrochemical Discharge Machining for Biomedical and Microfluidic Applications. In 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC); IEEE, 2019; pp 263–266. 10.1109/EPTC47984.2019.9026714.
  • Pawar, K.; S, H.; Dixit, P. Investigation of Cu-Sn-Cu Transient Liquid Phase Bonding for Microsystems Packaging. Mater. Manuf. Processes. 2023, 38(3), 284–294. DOI: https://doi.org/10.1080/10426914.2022.2105888.
  • Singh, T.; Dvivedi, A. Impact of Gas Film Thickness on the Performance of RM-ECDM Process During Machining of Glass. Mater. Manuf. Processes. 2022, 37(6), 652–663. DOI: 10.1080/10426914.2021.1945092.
  • Sharma, S.; Singh, T.; Dvivedi, A. A Review on Developments in Electrolytes and Their Feeding Methods for ECDM Process. Silicon. 2022. DOI: 10.1007/s12633-022-02134-3.
  • Singh, N.; Yadava, V.; Shandilya, P. Experimental Investigation into Electrochemical Discharge Peripheral Surface Grinding Process of Polymer Nanocomposites. Int. J. Mach. Mach. Mater. 2023, 25(1), 21. DOI: 10.1504/IJMMM.2023.129587.
  • Zhou, S.; Liu, Z.; Han, Y.; Yue, X.; Qiu, M. An Electrochemical Discharge Ablation Compound Milling Method Utilizing Electrolyte-Oxygen Aerosol Medium. Int. J. Adv. Manuf. Technol. 2023, 126(7–8), 3713–3724. DOI: https://doi.org/10.1007/s00170-023-11391-4.
  • Harugade, M.; Waigaonkar, S.; Kulkarni, G.; Diering, M. Experimental Investigations of Magnetic Field-Assisted High-Speed Electrochemical Discharge Drilling. Mater. Manuf. Processes. 2023, 38(10), 1243–1254. DOI: https://doi.org/10.1080/10426914.2021.2016814.
  • Behroozfar, A.; Razfar, M. R. Experimental and Numerical Study of Material Removal in Electrochemical Discharge Machining (ECDM). Mater. Manuf. Processes. 2016, 31(4), 495–503. DOI: 10.1080/10426914.2015.1058951.
  • Bhargav, K. V. J.; Balaji, P. S.; Sahu, R. K. Micromachining of Borosilicate Glass Using an Electrolyte-Sonicated-µ-ECDM System. Mater. Manuf. Processes. 2023, 38(1), 64–77. DOI: 10.1080/10426914.2022.2089893.
  • Sabahi, N.; Razfar, M. R. Investigating the Effect of Mixed Alkaline Electrolyte (NaOh + KOH) on the Improvement of Machining Efficiency in 2D Electrochemical Discharge Machining (ECDM). Int. J. Adv. Manuf. Technol. 2018, 95(1–4), 643–657. DOI: 10.1007/s00170-017-1210-4.
  • Rajput, V.; Goud, M.; Suri, N. M. Three-Dimensional Finite Element Modeling and Response Surface Based Multi-Response Optimization During Silica Drilling with Closed-Loop ECDM. Silicon. 2021, 13(10), 3583–3609. DOI: 10.1007/s12633-020-00867-7.
  • Rajput, V.; Goud, M.; Suri, N. M. Multi-Spark Simulation of the Electrochemical Discharge Machining (ECDM) Process. J. Mech. Sci. Technol. 2021, 35(11), 5127–5135. DOI: 10.1007/s12206-021-1029-7.
  • Dhanvijay, M. R.; Kulkarni, V. A.; Doke, A. Experimental Investigation and Analysis of Electrochemical Discharge Machining (ECDM) on Fiberglass Reinforced Plastic (FRP). J. Inst. Eng. India Ser. C. 2019, 100(5), 763–769. DOI: https://doi.org/10.1007/s40032-019-00524-y.
  • Singh, T.; Dvivedi, A. On Pressurized Feeding Approach for Effective Control on Working Gap in ECDM. Mater. Manuf. Processes. 2018, 33(4), 462–473. DOI: 10.1080/10426914.2017.1339319.
  • Tang, W.; Zhu, Y.; Kang, X.; Mao, C. Experimental Investigation of Discharge Phenomena in Electrochemical Discharge Machining Process. Micromachines. (Basel). 2023, 14(2), 367. DOI: 10.3390/mi14020367.
  • Lu, J.; Guan, J.; Dong, B.; Zhao, Y. Control Principle of Anodic Discharge for Enhanced Performance in Jet-Electrochemical Discharge Machining of Semiconductor 4H-Sic. J. Manuf. Process. 2023, 92, 435–452. DOI: 10.1016/j.jmapro.2023.03.007.
  • Bhargav, K. V. J.; Pyla, K. R.; Balaji, P. S.; Sahu, R. K. Micromachining of Al7075 Alloy Using an In-Situ Ultrasonicated µ-ECDM System. Mater. Manuf. Processes. 2023, 38(13), 1663–1675. DOI: https://doi.org/10.1080/10426914.2023.2187822.
  • Arab, J.; Dixit, P. Influence of Tool Electrode Feed Rate in the Electrochemical Discharge Drilling of a Glass Substrate. Mater. Manuf. Processes. 2020, 35(15), 1749–1760. DOI: 10.1080/10426914.2020.1784936.
  • Behroozfar, A.; Razfar, M. R. Experimental Study of the Tool Wear During the Electrochemical Discharge Machining. Mater. Manuf. Processes. 2016, 31(5), 574–580. DOI: 10.1080/10426914.2015.1004685.
  • Kumar, N.; Mandal, N.; Das, A. K. Micro-Machining Through Electrochemical Discharge Processes: A Review. Mater. Manuf. Processes. 2020, 35(4), 363–404. DOI: 10.1080/10426914.2020.1711922.
  • Oza, A. D.; Kumar, A.; Badheka, V.; Arora, A. Traveling Wire Electrochemical Discharge Machining (TW-ECDM) of Quartz Using Zinc Coated Brass Wire: Investigations on Material Removal Rate and Kerf Width Characteristics. Silicon. 2019, 11(6), 2873–2884. DOI: 10.1007/s12633-019-0070-y.
  • Bindu Madhavi, J.; Hiremath, S. S. Machining and Characterization of Channels and Textures on Quartz Glass Using μ-ECDM Process. Silicon. 2019, 11(6), 2919–2931. DOI: 10.1007/s12633-019-0083-6.
  • Bellubbi, S.; N, S.; Mallick, B. Multi Response Optimization of ECDM Process Parameters for Machining of Microchannel in Silica Glass Using Taguchi–GRA Technique. Silicon. 2022, 14(8), 4249–4263. DOI: 10.1007/s12633-021-01167-4.
  • Tokura, H.; Kondoh, I.; Yoshikswa, M. Ceramic Material Processing by Electrical Discharge in Electrolyte. J. Mater. Sci. 1989, 24(3), 991–998. DOI: 10.1007/BF01148788.
  • Yonghong, L.; Zhixin, J.; Jinchun, L. Study on Hole Machining of Non-Conducting Ceramics by Gas-Filled Electrodischarge and Electrochemical Compound Machining. J. Mater. Process. Technol. 1997, 69(1–3), 198–202. DOI: 10.1016/s0924-0136(97)00018-6.
  • Bhattacharyya, B.; Doloi, B. N.; Sorkhel, S. K. Experimental Investigations into Electrochemical Discharge Machining (ECDM) of Non-Conductive Ceramic Materials. J. Mater. Process. Technol. 1999, 95(1–3), 145–154. DOI: 10.1016/S0924-0136(99)00318-0.
  • Jain, V. K.; Chak, S. K. Electrochemical Spark Trepanning of Alumina and Quartz. Mach. Sci. Technol. 2000, 4(2), 277–290. DOI: 10.1080/10940340008945710.
  • Jain, V. K.; Choudhury, S. K.; Ramesh, K. M. On the Machining of Alumina and Glass. Int. J. Mach. Tools Manuf. 2002, 42(11), 1269–1276. DOI: 10.1016/S0032-3861(02)00241-0.
  • Chak, S. K.; Venkateswara Rao, P. The Drilling of Al2O3 Using a Pulsed DC Supply with a Rotary Abrasive Electrode by the Electrochemical Discharge Process. Int. J. Adv. Manuf. Technol. 2008, 39(7–8), 633–641. DOI: 10.1007/s00170-007-1263-x.
  • Xu, K.; Zhang, Z.; Yang, J.; Zhu, H.; Fang, X. Experimental Study on Machining Engineering Ceramics by Electrochemical Discharge Compound Grinding. Materials. 2019, 12(16), 2514. DOI: 10.3390/ma12162514.
  • Wang, J.; Guo, Y. B.; Fu, C.; Jia, Z. Surface Integrity of Alumina Machined by Electrochemical Discharge Assisted Diamond Wire Sawing. J. Manuf. Process. 2018, 31, 96–102. DOI: 10.1016/j.jmapro.2017.11.008.
  • Wüthrich, R.; Abou Ziki, J. D. Micromachining Using Electrochemical Discharge Phenomenon: Fundamentals and Application of Spark Assisted Chemical Engraving: Second Edition. 2014. DOI: 10.1016/C2013-0-00654-8.
  • Sabahi, N.; Hajian, M.; Razfar, M. R. Experimental Study on the Heat-Affected Zone of Glass Substrate Machined by Electrochemical Discharge Machining (ECDM) Process. Int. J. Adv. Manuf. Technol. 2018, 97(1–4), 1557–1564. DOI: 10.1007/s00170-018-2027-5.
  • Singh, T.; Dvivedi, A. On Prolongation of Discharge Regime During ECDM by Titrated Flow of Electrolyte. Int. J. Adv. Manuf. Technol. 2020, 107(3–4), 1819–1834. DOI: 10.1007/s00170-020-05126-y.
  • Mishra, D. K.; Dixit, P. Fabrication of 3D Microstructures in Glass by Direct Writing Electrochemical Discharge Machining. Mater. Manuf. Processes. 2023, 38(8), 999–1008. DOI: 10.1080/10426914.2022.2146718.
  • Sharma, P.; Mishra, D. K.; Dixit, P. Experimental Investigations into Alumina Ceramic Micromachining by Electrochemical Discharge Machining Process. Procedia Manuf. 2020, 48, 244–250. DOI: 10.1016/j.promfg.2020.05.044.
  • Ayobi, A. Distinction Between EGDM and ECDM Models in Organic Diodes Based on LEP Organic Material with Using Gauss–Newton Method. Opt. Quant. Electron. 2021, 53(6), 325. DOI: https://doi.org/10.1007/s11082-021-02961-5.
  • Mallick, B.; Sarkar, B. R.; Doloi, B.; Bhattacharyya, B. Improvement of Surface Quality and Machining Depth of μ-ECDM Performances Using Mixed Electrolyte at Different Polarity. Silicon. 2022, 14(13), 8223–8232. DOI: 10.1007/s12633-021-01587-2.
  • Rathore, R. S.; Dvivedi, A. Sonication of Tool Electrode for Utilizing High Discharge Energy During ECDM. Mater. Manuf. Processes. 2020, 35(4), 415–429. DOI: 10.1080/10426914.2020.1718699.
  • He, S.; Tong, H.; Liu, G. Spark Assisted Chemical Engraving (SACE) Mechanism on ZrO2 Ceramics by Analyzing Processed Products. Ceram. Int. 2018, 44(7), 7967–7971. DOI: 10.1016/j.ceramint.2018.01.236.
  • Paul, L.; Hiremath, S. S. Model Prediction and Experimental Study of Material Removal Rate in Micro ECDM Process on Borosilicate Glass. Silicon. 2022, 14(4), 1497–1510. DOI: 10.1007/s12633-021-00948-1.
  • Cao, X. D.; Kim, B. H.; Chu, C. N. Hybrid Micromachining of Glass Using ECDM and Micro Grinding. Int. J. Precis. Eng. Manuf. 2013, 14(1), 5–10. DOI: 10.1007/s12541-013-0001-6.
  • Ladeesh, V. G.; Manu, R. Effect of Machining Parameters on Edge-Chipping During Drilling of Glass Using Grinding-Aided Electrochemical Discharge Machining (G-ECDM). Adv. Manuf. 2018, 6(2), 215–224. DOI: 10.1007/s40436-017-0194-5.
  • Arab, J.; Dixit, P. Formation of Macro-Sized Through-Holes in Glass Using Notch-Shaped Tubular Electrodes in Electrochemical Discharge Machining. J. Manuf. Process. 2022, 78, 92–106. DOI: 10.1016/j.jmapro.2022.03.052.
  • Arab, J.; Adhale, P.; Mishra, D. K.; Dixit, P. Micro Array Hole Formation in Glass Using Electrochemical Discharge Machining. Procedia Manuf. 2019, 34, 349–354. DOI: 10.1016/j.promfg.2019.06.174.
  • Nguyen, K.-H.; Lee, P. A.; Kim, B. H. Experimental Investigation of ECDM for Fabricating Micro Structures of Quartz. Int. J. Precis. Eng. Manuf. 2015, 16(1), 5–12. DOI: 10.1007/s12541-015-0001-9.
  • Jain, V. K. Advanced Machining Science; CRC Press: Boca Raton, 2022. DOI: 10.1201/9780429160011.
  • Sharma, P.; Arab, J.; Dixit, P. Through-Holes Micromachining of Alumina Using a Combined Pulse-Feed Approach in ECDM. Mater. Manuf. Processes. 2021, 36(13), 1501–1512. DOI: 10.1080/10426914.2021.1905835.
  • Gehlot, D.; Jha, P. K.; Jain, P. K. Experimental Investigation and Modelling Studies on MHD Convection in Magnetic-Assisted -ECDM. Mater. Manuf. Processes. 2023, 1–12. DOI: 10.1080/10426914.2023.2236207.
  • Singh, M.; Dvivedi, A.; Kumar, P. Dimensional Accuracy Enhancement of Machined-Hole Through UAECDM-Process Under the Magnetic-Field-Assistance. Mater. Manuf. Processes. 2023, 1–17. DOI: 10.1080/10426914.2023.2244048.
  • Bagheri, M.; Sayadi, D.; Etefagh, A. H.; Khajehzadeh, M.; Razfar, M. R. Drilling of Al2O3 Ceramic Using Ultrasonic Assisted Electrochemical Discharge Machining Process. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng., 09544089221141339. DOI: 10.1177/09544089221141339.
  • Bahar, D.; Dvivedi, A.; Kumar, P. On Innovative Approach in ECDM Process by Controlling the Temperature and Stirring Rate of the Electrolyte. Mater. Manuf. Processes. 2023, 1–19. DOI: 10.1080/10426914.2023.2238057.
  • Zou, Z.; Chan, K.; Qiao, S.; Zhang, K.; Yue, T.; Guo, Z.; Liu, J. Electrochemical Discharge Machining of a High-Precision Micro-Holes Array in a Glass Wafer Using a Damping and Confinement Technique. J. Manuf. Process. 2023, 99, 152–167. DOI: 10.1016/j.jmapro.2023.05.031.
  • Yang, C.-H.; Tsui, H.-P. A Study on Quartz Wafer Slot Polishing by Using the Ultrasonic-Assisted Wire Electrophoretic Deposition Method. Int. J. Adv. Manuf. Technol. 2023, 128(7–8), 3133–3148. DOI: 10.1007/s00170-023-12145-y.
  • High Purity Alumina Market Size | Industry Growth Report 2022-2027. https://www.imarcgroup.com/high-purity-alumina-market (accessed Jan 24, 2023).
  • Mohanty, S.; Rameshbabu, A. P.; Mandal, S.; Su, B.; Dhara, S. Critical Issues in Near Net Shape Forming via Green Machining of Ceramics: A Case Study of Alumina Dental Crown. J. Asian Ceram. Soc. 2013, 1(3), 274–281. DOI: 10.1016/j.jascer.2013.06.005.
  • Ji, M.; Xu, J.; Chen, M.; el Mansori, M. Enhanced Hydrophilicity and Tribological Behavior of Dental Zirconia Ceramics Based on Picosecond Laser Surface Texturing. Ceram. Int. 2020, 46(6), 7161–7169. DOI: 10.1016/j.ceramint.2019.11.210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.