266
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SPIF of micro-FSWed dissimilar AlMgSi alloy: formability analysis

Pages 597-609 | Received 04 Oct 2023, Accepted 29 Nov 2023, Published online: 23 Jan 2024

References

  • Suresh, V. V. N. S.; Regalla, S. P.; Gupta, A. K. Combined Effect of Thickness Ratio and Selective Heating on Weld Line Movement in Stamped Tailor-Welded Blanks. Mater. Manuf. Process. 2017, 32(12), 1363–1367. DOI: 10.1080/10426914.2016.1257128.
  • Bandyopadhyay, K.; Panda, S. K.; Saha, P.; Padmanabham, G. Limiting Drawing Ratio and Deep Drawing Behavior of Dual Phase Steel Tailor Welded Blanks: FE Simulation and Experimental Validation. J. Mater. Process. Technol. 2015, 217, 48–64. DOI: 10.1016/j.jmatprotec.2014.10.022.
  • Shu, Y. Q.; Xiang, N.; Wang, P. Y.; Huang, T.; Wang, Y. L.; Wang, N. N.; Shan, C. W. Evolution of In-Plane Stresses Induced Fracture Behaviors of Tailor Welded Blanks Subjected to Non-Uniformly Distributed Load. Eng. Fail. Anal. 2023, 153(August), 107546. DOI: 10.1016/j.engfailanal.2023.107546.
  • Riahi, M.; Amini, A.; Sabbaghzadeh, J.; Torkamany, M. J. Analysis of Weld Location Effect and Thickness Ratio on Formability of Tailor Welded Blank. Sci. Technol. Weld. Join. 2012, 17(4), 282–287. DOI: 10.1179/1362171812Y.0000000005.
  • Katiyar, B. S.; Bandyopadhyay, K.; Panda, S. K. Deep Drawability of Welded Tailored Blanks. In Reference Module in Materials Science and Materials Engineering, Elsevier Ltd: 2023; pp 1–20. doi:10.1016/b978-0-323-96020-5.00032-7
  • Dewang, Y.; Sharma, V. Sheet Metal Shrink Flanging Process: A Critical Review of Current Scenario and Future Prospects. Mater. Manuf. Process. 2023, 38(6), 629–658. DOI: 10.1080/10426914.2022.2149779.
  • Bandyopadhyay, K.; Basak, S.; Panda, S. K.; Saha, P.; Zhou, N. Application of Non-Associated Flow Rule for Prediction of Nonuniform Material Flow During Deep Drawing of Tailor Welded Blanks. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237(4), 618–629. DOI: 10.1177/09544054221110958.
  • Bandyopadhyay, K.; Basak, S.; Panda, S. K.; Saha, P. Use of Stress Based Forming Limit Diagram to Predict Formability in Two-Stage Forming of Tailor Welded Blanks. Mater. Des. 2015, 67, 558–570. DOI: 10.1016/j.matdes.2014.10.089.
  • Liu, Z.; Li, Y.; Meehan, P. A. Vertical Wall Formation and Material Flow Control for Incremental Sheet Forming by Revisiting Multistage Deformation Path Strategies. Mater. Manuf. Process. 2013, 28(5), 562–571. DOI: 10.1080/10426914.2013.763964.
  • Agrawal, M. K.; Singh, P.; Mishra, P.; Deb, R. K.; Mohammed, K. A.; Kumar, S.; Kumar, G. A Brief Review on the Perspective of a Newer Incremental Sheet Forming Technique and Its Usefulness. Adv. Mater. Process. Technol. 2023, 1–11. DOI: 10.1080/2374068X.2023.2168288.
  • Makwana, R.; Modi, B.; Patel, K. Single-Stage Single Point Incremental Square Hole Flanging of AA5052 Material. Mater. Manuf. Process. 2023, 38(6), 680–691. DOI: 10.1080/10426914.2022.2136377.
  • Shubham; Nayak, K. K.; Teja, P. J.; Jain, R.; Bandyopadhyay, K. Investigation on the Formability of Friction Stir Welded Al-TWB Through Incremental Forming. IOP Conf. Ser Mater. Sci. Eng. 2022, 1238(1), 012046. DOI: 10.1088/1757-899x/1238/1/012046.
  • Wang, X.; Pan, Y.; Lados, D. A. Friction Stir Welding of Dissimilar Al/Al and Al/non-Al Alloys: A Review. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 2018, 49(4), 2097–2117. DOI: 10.1007/s11663-018-1290-z.
  • Patel, V.; Li, W.; Wang, G.; Wang, F.; Vairis, A.; Niu, P. Friction Stir Welding of Dissimilar Aluminum Alloy Combinations: State-Of-The-Art. Metals (Basel). 2019, 9, 3. DOI: 10.3390/met9030270.
  • Dewangan, S. K.; Banjare, P. N.; Tripathi, M. K.; Manoj, M. K. Effect of Vertical and Horizontal Zinc Interlayer on Material Flow, Microstructure, and Mechanical Properties of Dissimilar FSW of Al 7075 and Mg AZ31 Alloys. Int. J. Adv. Manuf. Technol. 2023, 126(9–10), 4453–4474. DOI: 10.1007/s00170-023-11348-7.
  • Majeed, T.; Ansari, N.; Mehta, Y.; Siddiquee, A. N. Al Alloy Tailor-Welded Blanks Fabrication via Friction Stir Welding: Effect of Shoulder Size. J. Manuf. Sci. Eng. 2022, 144(4). DOI: 10.1115/1.4052295.
  • Han, Y.; Jiang, X.; Yuan, T.; Chen, S.; Li, D.; Qi, Z. Microstructural Evolution and Mechanical Properties of Friction Stir Welded Butt Joints of 5A06 Alloy Ultra-Thin Sheets. Mater. (Basel). 2019, 12(23), 23. DOI: 10.3390/ma122333906.
  • Doley, J. K.; Kore, S. D. A Study on Friction Stir Welding of Dissimilar Thin Sheets of Aluminum Alloys AA 5052-AA 6061. J. Manuf. Sci. Eng. Trans. ASME. 2016, 138(11), 1–6. DOI: 10.1115/1.4033691.
  • Jain, R.; Pal, S. K.; Singh, S. B. Investigation on Effect of Pin Shapes on Temperature, Material Flow and Forces During Friction Stir Welding: A Simulation Study. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233(9), 1980–1992. DOI: 10.1177/0954405418805615.
  • Tayebi, P.; Fazli, A.; Asadi, P.; Soltanpour, M. Formability Analysis of Dissimilar Friction Stir Welded AA 6061 and AA 5083 Blanks by SPIF Process. CIRP J. Manuf. Sci. Technol. 2019, 25, 50–68. DOI: 10.1016/j.cirpj.2019.02.002.
  • Kumar, G.; Maji, K. Forming Limit Analysis of Friction Stir Tailor Welded AA5083 and AA7075 Sheets in Single Point Incremental Forming. Int. J. Mater. Form. 2022, 15, 3. DOI: 10.1007/s12289-022-01675-7.
  • Jagtap, R.; Kashid, S.; Kumar, S.; Hussein, H. M. A. An Experimental Study on the Influence of Tool Path, Tool Diameter and Pitch in Single Point Incremental Forming (SPIF). Adv. Mater. Process. Technol. 2015, 1(3–4), 465–473. DOI: 10.1080/2374068X.2015.1128171.
  • Wankhede, P.; K, M.; Kurra, S.; Singh, S. K. Heat Treatment and Temperature Effects on Formability of AA2014-T6 in Incremental Forming. Mater. Manuf. Process. 2022, 37(12), 1384–1392. DOI: 10.1080/10426914.2021.2016813.
  • Elangovan, K.; Balasubramanian, V.; Valliappan, M. Effect of Tool Pin Profile and Tool Rotational Speed on Mechanical Properties of Friction Stir Welded AA6061 Aluminium Alloy. Mater. Manuf. Process. 2008, 23(3), 251–260. DOI: 10.1080/10426910701860723.
  • Choudhary, A. K.; Jain, R. Fundamentals of Friction Stir Welding, Its Application, and Advancements. Weld. Technol, 2021, 41–90. DOI: 10.1007/978-3-030-63986-0_2.
  • Zhao, Z.; Liang, H.; Zhao, Y.; Yan, K. Effect of Exchanging Advancing and Retreating Side Materials on Mechanical Properties and Electrochemical Corrosion Resistance of Dissimilar 6013-T4 and 7003 Aluminum Alloys FSW Joints. J Mater. Eng. Perform. 2018, 27(4), 1777–1783. DOI: https://doi.org/10.1007/s11665-018-3253-6.
  • Heidarzadeh, A.; Mironov, S.; Kaibyshev, R.; Çam, G.; Simar, A.; Gerlich, A.; Khodabakhshi, F.; Mostafaei, A.; Field, D. P.; Robson, J. D., et al. Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution. Prog. Mater. Sci. 2021, 117(September 2020), 100752. DOI: 10.1016/j.pmatsci.2020.100752.
  • Mystica, A.; Senthil Kumar, V. S.; Padmanabhan, K. A. On the Friction Stir Welding of Alloy AA2014 Under N-MQL Cooling Condition. J. Adhes. Sci. Technol. 2023, 37(13), 2025–2045. DOI: 10.1080/01694243.2022.2109450.
  • Farid, W.; Bah, T. A.; Kong, C.; Yu, H. A Novel Way to Fabricate High Elastic Modulus and High Strength of TiC Reinforced Aluminum Matrix Composite. Mater. Manuf. Process. 2023, 1–13. DOI: 10.1080/10426914.2023.2217886.
  • Wenjing, Y.; Hua, D.; Jizhong, L. Parametric Optimization for Friction Stir Processing in Al-Zn-Mg-Cu Alloy. Mater. Manuf. Process. 2022, 37(1), 1–10. DOI: 10.1080/10426914.2021.1942906.
  • Mahto, R. P.; Rout, M.; Pal, S. K. Mechanism of Microstructure Evolution and Grain Growth in Friction Stir Welding of AA6061-T6 and AISI304 in Air and Water Media. Mater. Chem. Phys. 2021, 273(May), 125081. DOI: 10.1016/j.matchemphys.2021.125081.
  • Heidarzadeh, A.; Javidani, M.; Mofarrehi, M.; Farzaneh, A.; Chen, X. G. Submerged Dissimilar Friction Stir Welding of Aa6061 and AA7075 Aluminum Alloys: Microstructure Characterization and Mechanical Property. Metals (Basel). 2021, 11, 10. DOI: 10.3390/met11101592.
  • Verma, J.; Taiwade, R. V.; Reddy, C.; Khatirkar, R. K. Effect of Friction Stir Welding Process Parameters on Mg-AZ31B/Al-AA6061 Joints. Mater. Manuf. Process. 2018, 33(3), 308–314. DOI: 10.1080/10426914.2017.1291957.
  • Chen, Y.; Ding, H.; Cai, Z.; Zhao, J.; Li, J. Effect of Initial Base Metal Temper on Microstructure and Mechanical Properties of Friction Stir Processed Al-7B04 Alloy. Mater. Sci. Eng. A. 2016, 650, 396–403. DOI: 10.1016/j.msea.2015.10.083.
  • Bahemmat, P.; Haghpanahi, M.; Besharati, M. K.; Ahsanizadeh, S.; Rezaei, H. Study on Mechanical, Micro-, and Macrostructural Characteristics of Dissimilar Friction Stir Welding of AA6061-T6 and AA7075-T6. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224(12), 1854–1865. DOI: 10.1243/09544054JEM1959.
  • Choudhary, A. K.; Teja, P. J.; Jain, R. Enhancement of Mechanical and Microstructural Properties of Friction Stir Welded AA2024 by Eccentric Square Tool Pin. Mater. Chem. Phys. 2024, 311(September 2023), 128550. DOI: 10.1016/j.matchemphys.2023.128550.
  • Jayaseelan, V.; Jayabalakrishnan, D.; Ashok Gandhi, R.; Muthuramalingam, T.; Francis Xavier, J. Impact of the Novel Square Wave Tool Path Pattern on AA6061-T6 Friction Stir Welding. Mater. Manuf. Process. 2022, 37(8), 886–895. DOI: 10.1080/10426914.2021.1973028.
  • Sachinkumar; Chakradhar, D.; Narendranath, S. Analysis of the Effect of Friction Stir Welding Parameters on Characteristics of AA6061 Composites Using Response Surface Methodology. Trans. Indian Inst. Met. 2021, 74(6), 1303–1319. DOI: 10.1007/s12666-021-02214-9.
  • Marathe, S. P.; Raval, H. K. Numerical Investigation on Forming Behavior of Friction Stir Tailor Welded Blanks (FSTWBs) During Single-Point Incremental Forming (SPIF) Process. J. Brazilian Soc. Mech. Sci. Eng. 2019, 41(10), 1–18. DOI: 10.1007/s40430-019-1929-y.
  • Asadian-Ardakani, M. H.; Morovvati, M. R.; Mirnia, M. J.; Dariani, B. M. Theoretical and Experimental Investigation of Deep Drawing of Tailor-Welded if Steel Blanks with Non-Uniform Blank Holder Forces. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231(2), 286–300. DOI: 10.1177/0954405415577559.
  • Kim, Y. H.; Park, J. J. Effect of Process Parameters on Formability in Incremental Forming of Sheet Metal. J. Mater. Process. Technol. 2002, 130(131), 42–46. DOI: 10.1016/S0924-0136(02)00788-4.
  • Arshad, S. Single Point Incremental Forming: A Study of Forming Parameters, Forming Limits and Part Accuracy of Aluminium 2024, 6061 and 7475 Alloys. KTH Royal Institute of technology, Stockholm, Sweden, 2012.
  • Gupta, P.; Szekeres, A.; Jeswiet, J. Design and Development of an Aerospace Component with Single-Point Incremental Forming. Int. J. Adv. Manuf. Technol. 2019, 103(9–12), 3683–3702. DOI: 10.1007/s00170-019-03622-4.
  • Cui, X.; Du, Z.; Xiao, A.; Yan, Z.; Qiu, D.; Yu, H.; Chen, B. Electromagnetic Partitioning Forming and Springback Control in the Fabrication of Curved Parts. J. Mater. Process. Technol. 2021, 288(March 2020), 116889. DOI: 10.1016/j.jmatprotec.2020.116889.
  • Bensaid, K.; Souissi, R.; Boulila, A.; Ayadi, M.; Ben Fredj, N. Numerical Investigation of Incremental Forming Process of AISI 304 Stainless Steel. Ironmak. Steelmak. 2023, 50(2), 174–183. DOI: 10.1080/03019233.2022.2099695.
  • Buffa, G.; Gucciardi, M.; Fratini, L.; Micari, F. Multi-Directional Vs. Mono-Directional Multi-Step Strategies for Single Point Incremental Forming of Non-Axisymmetric Components. J. Manuf. Process. 2020, 55(April), 22–30. DOI: 10.1016/j.jmapro.2020.03.055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.