471
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of 3D-printing processing parameters on FFF parts’ porosity: outlook and trends

ORCID Icon &
Pages 804-814 | Received 01 Nov 2023, Accepted 02 Jan 2024, Published online: 13 Jan 2024

References

  • Srivatsan, T. S.; Sudarshan, T. S. Additive Manufacturing; Srivatsan, T. S., Sudarshan, T. S., Ed(s)., CRC Press, 2015. DOI:10.1201/b19360
  • Kechagias, J.; Chaidas, D.; Vidakis, N.; Salonitis, K.; Vaxevanidis, N. M. Key Parameters Controlling Surface Quality and Dimensional Accuracy: A Critical Review of FFF Process. Mater. Manuf. Process. 2022, 37(9), 963–984. DOI: 10.1080/10426914.2022.2032144.
  • Javaid, M.; Haleem, A. Additive Manufacturing Applications in Medical Cases: A Literature Based Review. Alexandria J. Med. 2018, 54(4), 411–422. DOI: 10.1016/j.ajme.2017.09.003.
  • Ampatzoglou, A.; Tsantzalis, S.; Mazarakos, D. E.; Kostopoulos, V. 3D Printed Frame for CubeSat Applications for Low-Earth Orbit Mission. Int. J. Comput. Aided Eng. Technol. 2017, 9(4), 434. DOI: 10.1504/IJCAET.2017.086923.
  • Zhang, Z.; Demir, K. G.; Gu, G. X. Developments in 4D-Printing: A Review on Current Smart Materials, Technologies, and Applications. Int. J. Smart Nano Mater. 2019, 10(3), 205–224. DOI: 10.1080/19475411.2019.1591541.
  • Ekinci, A.; Johnson, A. A.; Gleadall, A.; Han, X. The Effect of Geometry on Tensile Strength of Biodegradable Polylactic-Acid Tensile-Test Specimens by Material Extrusion. Int. J. Rapid Manufac. 2021, 10(1), 23. DOI: 10.1504/IJRAPIDM.2021.119937.
  • Joshi, S. C.; Sheikh, A. A. 3D Printing in Aerospace and Its Long-Term Sustainability. Virtual Phys. Prototyp. 2015, 10(4), 175–185. DOI: 10.1080/17452759.2015.1111519.
  • Bodaghi, M.; Sadooghi, A.; Bakhshi, M.; Hashemi, S. J.; Rahmani, K.; Keshavarz Motamedi, M. Glass Fiber Reinforced Acrylonitrile Butadiene Styrene Composite Gears by FDM 3D Printing. Adv. Mater. Interfaces. 2023, 10(27). DOI: https://doi.org/10.1002/admi.202300337.
  • Kuroyanagi, M.; Kuroyanagi, Y. Tissue-Engineered Products Capable of Enhancing Wound Healing. AIMS Mater. Sci. 2017, 4(3), 561–581. DOI: 10.3934/matersci.2017.3.561.
  • Spahiu, T.; Kitsakis, K.; Kechagias, J. D. Box-Behnken Design to Optimise 3D Printing Parameters in Applications for Fashion Products. Int. J. Exp. Des. Proc. Opt. 2022, 7(1), 49–61. DOI: 10.1504/IJEDPO.2022.131225.
  • Volpe, S.; Petrella, A.; Sangiorgio, V.; Notarnicola, M.; Fiorito, F. Preparation and Characterization of Novel Environmentally Sustainable Mortars Based on Magnesium Potassium Phosphate Cement for Additive Manufacturing. AIMS Mater. Sci. 2021, 8(4), 640–658. DOI: 10.3934/matersci.2021039.
  • Kechagias, J.; Chaidas, D. Fused Filament Fabrication Parameter Adjustments for Sustainable 3D Printing. Mater. Manuf. Process. 2023, 38(8), 933–940. DOI: 10.1080/10426914.2023.2176872.
  • Kechagias, J. D.; Zaoutsos, S. P. Optimising Fused Filament Fabrication Surface Roughness for a Dental Implant. Mater. Manuf. Process. 2023, 38(8), 954–959. DOI: 10.1080/10426914.2023.2176870.
  • Arigela, S. H.; Ch, R.; K, V. Investigation on Dual Nozzle Fused Deposition Modelling Using Industrial Robot. Adv. Mater. Process. Technol. 2022, 8(2), 1226–1244. DOI: 10.1080/2374068X.2020.1855400.
  • Ninikas, K.; Kechagias, J.; Fountas, N. A.; Vaxevanidis, N. M. A Study of Fused Filament Fabrication Process Efficiency: ABS Vs PLA Materials. IOP Conf. Ser Mater. Sci. Eng. 2022, 1235(1), 012007. DOI: 10.1088/1757-899X/1235/1/012007.
  • Chaidas, D.; Kitsakis, K.; Kechagias, J.; Maropoulos, S. The Impact of Temperature Changing on Surface Roughness of FFF Process. IOP Conf. Ser Mater. Sci. Eng. 2016, 161, 012033. DOI: 10.1088/1757-899X/161/1/012033.
  • Moza, Z.; Kitsakis, K.; Kechagias, J.; Mastorakis, N. Optimizing Dimensional Accuracy of Fused Filament Fabrication Using Taguchi Design. Rec. Adv. Sys. Sign. Cont. Commun. Comp . 2015, 110–114.
  • Kechagias, J. D.; Vidakis, N.; Petousis, M.; Mountakis, N. A Multi-Parametric Process Evaluation of the Mechanical Response of PLA in FFF 3D Printing. Mater. Manuf. Process. 2023, 38(8), 941–953. DOI: 10.1080/10426914.2022.2089895.
  • Parmar, H.; Khan, T.; Tucci, F.; Umer, R.; Carlone, P. Advanced Robotics and Additive Manufacturing of Composites: Towards a New Era in Industry 4.0. Mater. Manuf. Process. 2022, 37(5), 483–517. DOI: 10.1080/10426914.2020.1866195.
  • Kubota, M.; Hayakawa, K.; Todoroki, A. Effect of Build-Up Orientations and Process Parameters on the Tensile Strength of 3D Printed Short Carbon Fiber/PA-6 Composites. Adv. Compos. Mater. 2022, 31(2), 119–136. DOI: 10.1080/09243046.2021.1930497.
  • Scipioni, S. I.; Lambiase, F. Error Introduced by Direct 3D Printing of Compression Samples of PLA Made by FDM Process. Int. J. Adv. Manuf. Technol. 2023, 129(9–10), 4355–4368. DOI: 10.1007/s00170-023-12625-1.
  • Bedi, R.; Mehta, B. Adaptive Neuro Fuzzy Inference System in Modelling/Detecting Cracks and Porosity Using Liquid Penetrant Test. Int. J. Exp.Design Process Optimisation. 2016, 5(1/2), 117. DOI: 10.1504/IJEDPO.2016.080531.
  • Al-Maharma, A. Y.; Patil, S. P.; Markert, B. Effects of Porosity on the Mechanical Properties of Additively Manufactured Components: A Critical Review. Mater. Res. Express. 2020, 7(12), 122001. DOI: 10.1088/2053-1591/abcc5d.
  • Kumar, M. S.; Farooq, M. U.; Ross, N. S.; Yang, C.-H.; Kavimani, V.; Adediran, A. A. Achieving Effective Interlayer Bonding of PLA Parts During the Material Extrusion Process with Enhanced Mechanical Properties. Sci. Rep. 2023, 13(1), 6800. DOI: 10.1038/s41598-023-33510-7.
  • Al Rashid, A.; Koç, M. Numerical Predictions and Experimental Validation on the Effect of Material Properties in Filament Material Extrusion. J. Manuf. Process. 2023, 94, 403–412. DOI: 10.1016/j.jmapro.2023.03.027.
  • Aslani, K.-E.; Chaidas, D.; Kechagias, J.; Kyratsis, P.; Salonitis, K. Quality Performance Evaluation of Thin Walled PLA 3D Printed Parts Using the Taguchi Method and Grey Relational Analysis. J. Manuf. Mater. Process. 2020, 4(2), 47. DOI: 10.3390/jmmp4020047.
  • Fountas, N. A.; Kitsakis, K.; Aslani, K.-E.; Kechagias, J. D.; Vaxevanidis, N. M. An Experimental Investigation of Surface Roughness in 3D-Printed PLA Items Using Design of Experiments. Proc. Inst. Mech. Eng.J: J. Eng. Tribol. 2022, 236(10), 1979–1984. DOI: 10.1177/13506501211059306.
  • Jakupi, K.; Dukovski, V.; Hodolli, G.; Rydz, J. Surface Roughness Modeling of Material Extrusion PLA Flat Surfaces. Int. J. Polym. Sci. 2023, 2023, 1–8. DOI: 10.1155/2023/8844626.
  • Kechagias, J. D.; Vidakis, N.; Petousis, M. Parameter Effects and Process Modeling of FFF-TPU Mechanical Response. Mater. Manuf. Process. 2023, 2021, 341–351. DOI: 10.1080/10426914.2021.2001523.
  • Kumar, M.; Ramakrishnan, R.; Omarbekova, A.; Kumar, R. Experimental Characterization of Mechanical Properties and Microstructure Study of Polycarbonate (PC) Reinforced Acrylonitrile-Butadiene-Styrene (ABS) Composite with Varying PC Loadings. AIMS Mater. Sci. 2021, 8(1), 18–28. DOI: 10.3934/matersci.2021002.
  • Lee, T. J.; Morgenstern, A. H.; Höft, T. A.; Nelson-Cheeseman, B. B. Dispersion of Particulate in Solvent Cast Magnetic Thermoplastic Polyurethane Elastomer Composites. AIMS Mater. Sci. 2019, 6(3), 354–362. DOI: 10.3934/matersci.2019.3.354.
  • Chaidas, D.; Kechagias, J. D. An Investigation of PLA/W Parts Quality Fabricated by FFF. Mater. Manuf. Process. 2022, 37(5), 582–590. DOI: 10.1080/10426914.2021.1944193.
  • Mousavi, R.; Champiri, M. D.; Joshaghani, M. S.; Sajjadi, S. A Kinematic Measurement for Ductile and Brittle Failure of Materials Using Digital Image Correlation. AIMS Mater. Sci. 2016, 3(4), 1759–1772. DOI: 10.3934/matersci.2016.4.1759.
  • Yao, T.; Ye, J.; Deng, Z.; Zhang, K.; Ma, Y.; Ouyang, H. Tensile Failure Strength and Separation Angle of FDM 3D Printing PLA Material: Experimental and Theoretical Analyses. Compos. B Eng. 2020, 188, 107894. DOI: 10.1016/j.compositesb.2020.107894.
  • Zhuo, P.; Li, S.; Ashcroft, I. A.; Jones, A. I. Material Extrusion Additive Manufacturing of Continuous Fibre Reinforced Polymer Matrix Composites: A Review and Outlook. Compos. B Eng. 2021, 224, 109143. DOI: 10.1016/j.compositesb.2021.109143.
  • Kechagias, J.; Kitsakis, K.; Zacharias, A.; Theocharis, K.; Aslani, K.-E.; Petousis, M.; Fountas, N. A.; Vaxevadnidis, N. M. Direct 3D Printing of a Hand Splint Using Reverse Engineering. IOP Conf. Ser Mater. Sci. Eng. 2021, 1037(1), 012019. DOI: 10.1088/1757-899X/1037/1/012019.
  • Kechagias, J.; Anagnostopoulos, V.; Zervos, S.; Chryssolouris, G. Estimation of Build Times in Rapid Prototyping Processes. In 6th Eur. Conf. Rapid Prot. Manuf, Dickens, P. M., Eds.; University of Nottingham: Nottingham, 1997; pp. 137–148.
  • Chacón, J. M.; Caminero, M. Á.; Núñez, P. J.; García-Plaza, E.; Bécar, J. P. Effect of Nozzle Diameter on Mechanical and Geometric Performance of 3D Printed Carbon Fibre-Reinforced Composites Manufactured by Fused Filament Fabrication. Rapid Prototyp. J. 2021, 27(4), 769–784. DOI: 10.1108/RPJ-10-2020-0250.
  • Rajpurohit, S. R.; Dave, H. K. Flexural Strength of Fused Filament Fabricated (FFF) PLA Parts on an Open-Source 3D Printer. Adv. Manuf. 2018, 6(4), 430–441. DOI: 10.1007/s40436-018-0237-6.
  • Jiang, C.-P.; Cheng, Y.-C.; Lin, H.-W.; Chang, Y.-L.; Pasang, T.; Lee, S.-Y. Optimization of FDM 3D Printing Parameters for High Strength PEEK Using the Taguchi Method and Experimental Validation. Rapid Prototyp. J. 2022, 28(7), 1260–1271. DOI: 10.1108/RPJ-07-2021-0166.
  • Bardiya, S.; Jerald, J.; Satheeshkumar, V. The Impact of Process Parameters on the Tensile Strength, Flexural Strength and the Manufacturing Time of Fused Filament Fabricated (FFF) Parts. Mater. Today Proc. 2021, 39, 1362–1366. DOI: 10.1016/j.matpr.2020.04.691.
  • Kechagias, J. D.; Zaoutsos, S. P.; Chaidas, D.; Vidakis, N. Multi-Parameter Optimization of PLA/Coconut Wood Compound for Fused Filament Fabrication Using Robust Design. Int. J. Adv. Manuf. Technol. 2022, 119(7–8), 4317–4328. DOI: 10.1007/s00170-022-08679-2.
  • Marascio, M. G. M.; Antons, J.; Pioletti, D. P.; Bourban, P.-E. 3D Printing of Polymers with Hierarchical Continuous Porosity. Adv. Mater. Technol. 2017, 2(11), 1700145. DOI: 10.1002/admt.201700145.
  • Abbas, T.; Othman, F. M.; Ali, H. B. Effect of Infill Parameter on Compression Property in FDM Process. Int. J. Eng. Res. Appl. 2017, 7(10), 16–19. DOI: 10.9790/9622-0710021619.
  • Fernandez-Vicente, M.; Calle, W.; Ferrandiz, S.; Conejero, A. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print. Addit. Manuf. 2016, 3(3), 183–192. DOI: 10.1089/3dp.2015.0036.
  • Pirondi, A.; Moroni, F.; Ambrosini, D. Effect of Infill Ratio on Fracture Toughness of Fused Filament Fabrication (FFF) Polymeric Adhesive Joints. J. Adhes. 2022, 98(6), 606–636. DOI: 10.1080/00218464.2021.1986019.
  • Harpool, T. D.; Alarifi, I. M.; Alshammari, B. A.; Aabid, A.; Baig, M.; Malik, R. A.; Mohamed Sayed, A.; Asmatulu, R.; EL-Bagory, T. M. A. A. Evaluation of the Infill Design on the Tensile Response of 3D Printed Polylactic Acid Polymer. Materials. 2021, 14(9), 2195. DOI: 10.3390/ma14092195.
  • Mahmood, S.; Qureshi, A. J.; Goh, K. L.; Talamona, D. Tensile Strength of Partially Filled FFF Printed Parts: Experimental Results. Rapid Prototyp. J. 2017, 23(1), 122–128. DOI: 10.1108/RPJ-08-2015-0115.
  • Demir, M. Functionalization of Woven Fabrics by 3D Printed Structures in Fused Deposition Modelling (FDM): Effects of Infill Patterns on Tensile Strength. Int. J. 3D Printing Technol. Digital Industry. 2022, 6(2), 329–337. DOI: 10.46519/ij3dptdi.1134373.
  • Nace, S. E.; Tiernan, J.; Holland, D.; Ni Annaidh, A. A Comparative Analysis of the Compression Characteristics of a Thermoplastic Polyurethane 3D Printed in Four Infill Patterns for Comfort Applications. Rapid Prototyp. J. 2021, 27(11), 24–36. DOI: 10.1108/RPJ-07-2020-0155.
  • Rezayat, H.; Zhou, W.; Siriruk, A.; Penumadu, D.; Babu, S. S. Structure–Mechanical Property Relationship in Fused Deposition Modelling. Mater. Sci. Technol. 2015, 31(8), 895–903. DOI: 10.1179/1743284715Y.0000000010.
  • Nukala, P. K.; Palekar, S.; Patki, M.; Patel, K. Abuse Deterrent Immediate Release Egg-Shaped Tablet (Egglets) Using 3D Printing Technology: Quality by Design to Optimize Drug Release and Extraction. AAPS Pharm. Sci. tech. 2019, 20(2), 1–12. DOI: 10.1208/S12249-019-1298-Y.
  • Cho, E. E.; Hein, H. H.; Lynn, Z.; Hla, S. J.; Tran, T. Investigation on Influence of Infill Pattern and Layer Thickness on Mechanical Strength of PLA Material in 3D Printing Technology. J. Eng. Sci. Res. 2019, 3(2), 27–37.
  • Vassilakos, A.; Giannatsis, J.; Dedoussis, V. Fabrication of Parts with Heterogeneous Structure Using Material Extrusion Additive Manufacturing. Virtual Phys. Prototyp. 2021, 16(3), 267–290. DOI: 10.1080/17452759.2021.1919154.
  • Büyük, N. İ.; Aksu, D.; Torun Köse, G. Effect of Different Pore Sizes of 3D Printed PLA-Based Scaffold in Bone Tissue Engineering. Int. J. Polym. Mater. 2023, 72(13), 1021–1031. DOI: 10.1080/00914037.2022.2075869.
  • Alsoufi, M. S.; Alhazmi, M. W.; Suker, D. K.; Yunus, M.; Malibari, R. O. From 3D Models to FDM 3D Prints: Experimental Study of Chemical Treatment to Reduce Stairs-Stepping of Semi-Sphere Profile. AIMS Mater. Sci. 2019, 6(6), 1086–1106. DOI: 10.3934/matersci.2019.6.1086.
  • Turner, B. N.; Gold, S. A. A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness. Rapid Prototyp. J. 2015, 21(3), 250–261. DOI: 10.1108/RPJ-02-2013-0017.
  • Kuznetsov, V.; Solonin, A.; Urzhumtsev, O.; Schilling, R.; Tavitov, A. Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process. Polymers (Basel). 2018, 10(3), 313. DOI: 10.3390/polym10030313.
  • Coogan, T. J.; Kazmer, D. O. Bond and Part Strength in Fused Deposition Modeling. Rapid Prototyp. J. 2017, 23(2), 414–422. DOI: 10.1108/RPJ-03-2016-0050.
  • Geng, P.; Zhao, J.; Wu, W.; Ye, W.; Wang, Y.; Wang, S.; Zhang, S. Effects of Extrusion Speed and Printing Speed on the 3D Printing Stability of Extruded PEEK Filament. J. Manuf. Process. 2019, 37, 266–273. DOI: 10.1016/j.jmapro.2018.11.023.
  • Ziervogel, F.; Boxberger, L.; Bucht, A.; Drossel, W.-G. Expansion of the Fused Filament Fabrication (FFF) Process Through Wire Embedding, Automated Cutting, and Electrical Contacting. IEEE Access. 2021, 9, 43036–43049. DOI: 10.1109/ACCESS.2021.3065873.
  • Dodin, M. G. Welding Mechanisms of Plastics: A Review. J. Adhes. 1981, 12(2), 99–111. DOI: 10.1080/00218468108071192.
  • Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K. M. Preparation and Characterization of Thermally Stable ABS/HDPE Blend for Fused Filament Fabrication. Mater. Manuf. Process. 2020, 35(2), 230–240. DOI: 10.1080/10426914.2019.1692355.
  • Kumar, V.; Singh, R.; Ahuja, I. S. Secondary Recycled Polyvinylidene–Limestone Composite in 4D Printing Applications for Heritage Structures: Rheological, Thermal, Mechanical, Spectroscopic, and Morphological Analysis. P. I. Mech. Eng. E.-J. Pro. 2022, 237(2), 300–311. DOI: 10.1177/09544089221104771.
  • Rinaldi, M.; Ghidini, T.; Nanni, F. Fused Filament Fabrication of Polyetheretherketone/Multiwalled Carbon Nanotube Nanocomposites: The Effect of Thermally Conductive Nanometric Filler on the Printability and Related Properties. Polym. Int. 2021, 70(8), 1080–1089. DOI: 10.1002/pi.6206.
  • Gao, X.; Zhang, D.; Wen, X.; Qi, S.; Su, Y.; Dong, X. Fused Deposition Modeling with Polyamide 1012. Rapid Prototyp. J. 2019, 25(7), 1145–1154. DOI: 10.1108/RPJ-09-2018-0258.
  • Tan, H. W.; Choong, Y. Y. C.; Kuo, C. N.; Low, H. Y.; Chua, C. K. 3D Printed Electronics: Processes, Materials and Future Trends. Prog. Mater. Sci. 2022, 127, 100945. DOI: 10.1016/j.pmatsci.2022.100945.
  • Choi, Y.-H.; Kim, C.-M.; Jeong, H.-S.; Youn, J.-H. Influence of Bed Temperature on Heat Shrinkage Shape Error in FDM Additive Manufacturing of the ABS-Engineering Plastic. World J. Eng. Tech. 2016, 04(3), 186–192. DOI: 10.4236/wjet.2016.43D022.
  • Rosli, A. A.; Shuib, R. K.; Ishak, K. M. K.; Hamid, Z. A. A.; Abdullah, M. K.; Rusli, A. Influence of Bed Temperature on Warpage, Shrinkage and Density of Various Acrylonitrile Butadiene Styrene (ABS) Parts from Fused Deposition Modelling (FDM). In AIP Conf. Proc. (MAMIP 2019); 2020; p 020072. 10.1063/5.0015799.
  • Ansari, A. A.; Kamil, M. Effect of Print Speed and Extrusion Temperature on Properties of 3D Printed PLA Using Fused Deposition Modeling Process. Mater. Today Proc. 2021, 45, 5462–5468. DOI: 10.1016/j.matpr.2021.02.137.
  • Golhin, A. P.; Tonello, R.; Frisvad, J. R.; Grammatikos, S.; Strandlie, A. Surface Roughness of As-Printed Polymers: A Comprehensive Review. Int. J. Adv. Manuf. Technol. 2023, 127(3–4), 987–1043. DOI: https://doi.org/10.1007/s00170-023-11566-z.
  • Savandaiah, C.; Maurer, J.; Gall, M.; Haider, A.; Steinbichler, G.; Sapkota, J. Impact of Processing Conditions and Sizing on the Thermomechanical and Morphological Properties of Polypropylene/Carbon Fiber Composites Fabricated by Material Extrusion Additive Manufacturing. J. Appl. Polym. Sci. 2021, 138(16), 50243. DOI: 10.1002/app.50243.
  • Kumar, S.; Bhushan, P.; Sinha, N.; Prakash, O.; Bhattacharya, S. Investigation of Structure–Mechanical Property Relationship in Fused Filament Fabrication of the Polymer Composites. J. Micro Nanomanuf. 2019, 2(2), 167–174. DOI: 10.1177/2516598419843687.
  • Ouassil, S.; El Magri, A.; Vanaei, H. R.; Vaudreuil, S. Investigating the Effect of Printing Conditions and Annealing on the Porosity and Tensile Behavior of 3D ‐Printed Polyetherimide Material in Z ‐Direction. J. Appl. Polym. Sci. 2023, 140(4). DOI: 10.1002/app.53353.
  • Bowers, M. C.; Ehrlich, R.; Howard, J. J.; Kenyon, W. E. Determination of Porosity Types from NMR Data and Their Relationship to Porosity Types Derived from Thin Section. J. Pet. Sci. Eng. 1995, 13(1), 1–14. DOI: 10.1016/0920-4105(94)00056-A.
  • Ernst, M. F.; Maletzko, A.; Baumann, S.; Baumann, N.; Hübner, C.; Höhne, C. FFF 3D Printing of Small Porous Structures from Polymer Compounds Using the Ultimaker 3. Macromol. Mater. Eng. 2022, 307(10), 2200095. DOI: 10.1002/mame.202200095.
  • Kumar, P.; Sharma, S. K.; Singh, R. K. R. Recent Trends and Future Outlooks in Manufacturing Methods and Applications of FGM: A Comprehensive Review. Mater. Manuf. Process. 2022, 38(9), 1033–1067. DOI: 10.1080/10426914.2022.2075892.
  • Ravoori, D.; Salvi, S.; Prajapati, H.; Qasaimeh, M.; Adnan, A.; Jain, A. Void Reduction in Fused Filament Fabrication (FFF) Through in situ Nozzle-Integrated Compression Rolling of Deposited Filaments. Virtual Phys. Prototyp. 2021, 16(2), 146–159. DOI: 10.1080/17452759.2021.1890986.
  • Jeong, D.-I.; Jain, A.; Oh, D.-W. Increasing Perpendicular Alignment in Extruded Filament by an Orifice Embedded 3D Printing Nozzle. Virtual Phys. Prototyp. 2022, 17(1), 1–18. DOI: 10.1080/17452759.2021.1980935.
  • Han, S.; Xiao, Y.; Qi, T.; Li, Z.; Zeng, Q. Design and Analysis of Fused Deposition Modeling 3D Printer Nozzle for Color Mixing. Adv. Mater. Sci. Eng. 2017, 2017, 1–12. DOI: 10.1155/2017/2095137.
  • Fernández, E.; Ayas, C.; Langelaar, M.; Duysinx, P. Topology Optimisation for Large-Scale Additive Manufacturing: Generating Designs Tailored to the Deposition Nozzle Size. Virtual Phys. Prototyp. 2021, 16(2), 196–220. DOI: 10.1080/17452759.2021.1914893.
  • Sukindar, N. A.; Ariffin, M. K. A.; Baharudin, B. T. H. T.; Jaafar, C. N. A.; Ismail, M. I. S. Analyzing the Effect of Nozzle Diameter in Fused Deposition Modeling for Extruding Polylactic Acid Using Open Source 3D Printing. J Teknol. 2016, 78(10). DOI: 10.11113/jt.v78.6265.
  • Kechagias, J. D. 3D Printing Parametric Optimization Using the Power of Taguchi Design: An Expository Paradigm. Mater. Manuf. Process. 2023, 2023, 1–7. DOI: 10.1080/10426914.2023.2290258.
  • Kechagias, J. D.; Zaoutsos, S. P. An Investigation of the Effects of Ironing Parameters on the Surface and Compression Properties of Material Extrusion Components Utilizing a Hybrid-Modeling Experimental Approach. Prog. Addit. Manuf. 2023. DOI: 10.1007/s40964-023-00536-2.
  • Mbow, M. M.; Marin, P. R.; Pourroy, F. Extruded Diameter Dependence on Temperature and Velocity in the Fused Deposition Modeling Process. Prog. Addit. Manuf. 2020, 5(2), 139–152. DOI: 10.1007/s40964-019-00107-4.
  • Kim, G. D.; Oh, Y. T. A Benchmark Study on Rapid Prototyping Processes and Machines: Quantitative Comparisons of Mechanical Properties, Accuracy, Roughness, Speed, and Material Cost. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2008, 222(2), 201–215. DOI: 10.1243/09544054JEM724.
  • Žarko, J.; Vladić, G.; Pál, M.; Dedijer, S. Influence of Printing Speed on Production of Embossing Tools Using FDM 3d Printing Technology. J. Graph. Eng. Des. 2017, 8(1), 19–27. DOI: 10.24867/JGED-2017-1-019.
  • Mathew, N. T.; Laxmanan, V. Temperature Rise in Workpiece and Cutting Tool during Drilling of Titanium Aluminide under Sustainable Environment. Mater. Manuf. Process. 2018, 33(16), 1765–1774. DOI: 10.1080/10426914.2018.1476770.
  • Spoerk, M.; Gonzalez-Gutierrez, J.; Sapkota, J.; Schuschnigg, S.; Holzer, C. Effect of the Printing Bed Temperature on the Adhesion of Parts Produced by Fused Filament Fabrication. Plast. Rubber Compos. 2018, 47(1), 17–24. DOI: 10.1080/14658011.2017.1399531.
  • Soares, J. B.; Finamor, J.; Silva, F. P.; Roldo, L.; Cândido, L. H. Analysis of the Influence of Polylactic Acid (PLA) Colour on FDM 3D Printing Temperature and Part Finishing. Rapid Prototyp. J. 2018, 24(8), 1305–1316. DOI: 10.1108/RPJ-09-2017-0177.
  • Syamsuzzaman, M.; Mardi, N. A.; Fadzil, M.; Farazila, Y. Investigation of Layer Thickness Effect on the Performance of Low-Cost and Commercial Fused Deposition Modelling Printers. Mater. Res. Innov. 2014, 18(sup6), S6-485-S6–489. DOI: 10.1179/1432891714Z.0000000001030.
  • Lužanin, O.; Movrin, D.; Plančak, M. Effect of Layer Thickness, Deposition Angle, and Infill on Maximum Flexural Force in FDM-Built Specimens. J.Technol. Plast. 2014, 39(1), 49–58.
  • Gohari, H.; Kishawy, H.; Barari, A. Adaptive Variable Layer Thickness and Perimetral Offset Planning for Layer-Based Additive Manufacturing Processes. Int. J. Comput. Integr. Manuf. 2021, 34(9), 964–974. DOI: 10.1080/0951192X.2021.1946854.
  • Yu, W.; Nie, Z.; Lin, Y. Research on the Slicing Method with Equal Thickness and Low Redundancy Based on STL Files. J. Chin. Inst. Eng. 2021, 44(5), 469–477. DOI: 10.1080/02533839.2021.1919563.
  • Todoroki, A.; Oasada, T.; Mizutani, Y.; Suzuki, Y.; Ueda, M.; Matsuzaki, R.; Hirano, Y. Tensile Property Evaluations of 3D Printed Continuous Carbon Fiber Reinforced Thermoplastic Composites. Adv. Compos. Mater. 2020, 29(2), 147–162. DOI: 10.1080/09243046.2019.1650323.
  • Ishii, K.; Todoroki, A.; Mizutani, Y.; Suzuki, Y.; Koga, Y.; Matsuzaki, R.; Ueda, M.; Hirano, Y. Bending Fracture Rule for 3D-Printed Curved Continuous-Fiber Composite. Adv. Compos. Mater. 2019, 28(4), 383–395. DOI: 10.1080/09243046.2018.1558327.
  • Mosleh, N.; Rezadoust, A. M.; Dariushi, S. Determining Process-Window for Manufacturing of Continuous Carbon Fiber-Reinforced Composite Using 3D-Printing. Mater. Manuf. Process. 2021, 36(4), 409–418. DOI: 10.1080/10426914.2020.1843664.
  • Ibrahim, Y.; Elkholy, A.; Schofield, J. S.; Melenka, G. W.; Kempers, R. Effective Thermal Conductivity of 3D-Printed Continuous Fiber Polymer Composites. Adv. Manuf.: Polym. Compos. Sci. 2020, 6(1), 17–28. DOI: 10.1080/20550340.2019.1710023.
  • Rimašauskas, M.; Kuncius, T.; Rimašauskienė, R. Processing of Carbon Fiber for 3D Printed Continuous Composite Structures. Mater. Manuf. Process. 2019, 34(13), 1528–1536. DOI: 10.1080/10426914.2019.1655152.
  • Babu, S. S.; Mourad, A.-H. I.; Harib, K. H.; Vijayavenkataraman, S. Recent Developments in the Application of Machine-Learning Towards Accelerated Predictive Multiscale Design and Additive Manufacturing. Virtual Phys. Prototyp. 2023, 18, 1. DOI: 10.1080/17452759.2022.2141653.
  • Dong, Y.; Hu, B. Optimized Control Method for Fused Deposition 3D Printing Slice Contour Path Based on Improved Hopfield Neural Network. Appl. Artif. Intell. 2023, 37, 1. DOI: 10.1080/08839514.2023.2219946.
  • Lao, W.; Li, M.; Wong, T. N.; Tan, M. J.; Tjahjowidodo, T. Improving Surface Finish Quality in Extrusion-Based 3D Concrete Printing Using Machine Learning-Based Extrudate Geometry Control. Virtual Phys. Prototyp. 2020, 15(2), 178–193. DOI: 10.1080/17452759.2020.1713580.
  • Tamir, T. S.; Xiong, G.; Fang, Q.; Yang, Y.; Shen, Z.; Zhou, M.; Jiang, J. Machine-Learning-Based Monitoring and Optimization of Processing Parameters in 3D Printing. Int J Comput Integr Manuf. 2023, 36(9), 1362–1378. DOI: 10.1080/0951192X.2022.2145019.
  • Kumar Gupta, D.; Ali, M. H.; Ali, A.; Jain, P.; Anwer, M.; Iqbal, K.; Mirza, Z.; Mohd, A. 3D Printing Technology in Healthcare: Applications, Regulatory Understanding, IP Repository and Clinical Trial Status. J. Drug Target. 2022, 30(2), 131–150. DOI: 10.1080/1061186X.2021.1935973.
  • Aimar, A.; Palermo, A.; Innocenti, B. The Role of 3D Printing in Medical Applications: A State of the Art. J. Healthc. Eng. 2019, 2019, 1–10. DOI: 10.1155/2019/5340616.
  • Hurst, E. J. 3D Printing in Healthcare: Emerging Applications. J. Hosp. Librariansh. 2016, 16(3), 255–267. DOI: 10.1080/15323269.2016.1188042.
  • Ambrosi, A.; Pumera, M. 3D-Printing Technologies for Electrochemical Applications. Chem. Soc. Rev. 2016, 45(10), 2740–2755. DOI: 10.1039/C5CS00714C.
  • Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M. Possible Applications of 3D Printing Technology on Textile Substrates. IOP Conf. Ser Mater. Sci. Eng. 2016, 141, 012011. DOI: 10.1088/1757-899X/141/1/012011.
  • Xia, R.; Zhai, Z.; Chang, Y.; Li, H. Clinical Applications of 3‐Dimensional Printing Technology in Hip Joint. Orthop. Surg. 2019, 11(4), 533–544. DOI: 10.1111/os.12468.
  • Corsi, M.; Bagassi, S.; Moruzzi, M. C.; Weigand, F. Additively Manufactured Negative Stiffness Structures for Shock Absorber Applications. Mech. Adv. Mater. Struct. 2022, 2020(7), 999–1010. DOI: 10.1080/15376494.2020.1801917.
  • Jahromi, F. T.; Nikzad, M.; Prasad, K.; Norén, J.; Isaksson, M.; Arian, A.; Sbarski, I. Additive Manufacturing of Polypropylene Micro and Nano Composites Through Fused Filament Fabrication for Automotive Repair Applications. Polym. Adv. Technol. 2022, 34(3), 1059–1074. DOI: 10.1002/pat.5952.
  • Hernandez, D. Factors Affecting Dimensional Precision of Consumer 3D Printing. Int. J. Aviat. Aeronaut. 2015, 2(4), 1–42. DOI: 10.15394/ijaaa.2015.1085.
  • Feuerbach, T.; Kock, S.; Thommes, M. Characterisation of Fused Deposition Modeling 3D Printers for Pharmaceutical and Medical Applications. Pharm. Dev. Technol. 2018, 23(10), 1136–1145. DOI: 10.1080/10837450.2018.1492618.
  • Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H. B., et al. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning. 2021, 2021, 1–19. DOI: 10.1155/2021/9950131.
  • Kalman, J.; Fayazbakhsh, K.; Martin, D. Automated Draping Analysis of 3D Printed Flexible Isogrid Structures for Textile Applications. Text. Res. J. 2021, 91(19–20), 2387–2400. DOI: 10.1177/00405175211006210.
  • Zolfagharian, A.; Mahmud, M. A. P.; Gharaie, S.; Bodaghi, M.; Kouzani, A. Z.; Kaynak, A. 3D/4D-Printed Bending-Type Soft Pneumatic Actuators: Fabrication, Modelling, and Control. Virtual Phys. Prototyp. 2020, 15(4), 373–402. DOI: 10.1080/17452759.2020.1795209.
  • Compton, B. G.; Kemp, J. W.; Novikov, T. V.; Pack, R. C.; Nlebedim, C. I.; Duty, C. E.; Rios, O.; Paranthaman, M. P. D.-W. 3D Printing of NdFeB Bonded Magnets. Mater. Manuf. Process. 2018, 33(1), 109–113. DOI: 10.1080/10426914.2016.1221097.
  • Zarek, M.; Layani, M.; Eliazar, S.; Mansour, N.; Cooperstein, I.; Shukrun, E.; Szlar, A.; Cohn, D.; Magdassi, S. 4D Printing Shape Memory Polymers for Dynamic Jewellery and Fashionwear. Virtual Phys. Prototyp. 2016, 11(4), 263–270. DOI: 10.1080/17452759.2016.1244085.
  • Gul, J. Z.; Sajid, M.; Rehman, M. M.; Siddiqui, G. U.; Shah, I.; Kim, K.-H.; Lee, J.-W.; Choi, K. H. 3D Printing for Soft Robotics – a Review. Sci. Technol. Adv. Mater. 2018, 19(1), 243–262. DOI: 10.1080/14686996.2018.1431862.
  • Isaac, C. W.; Duddeck, F. Recent Progress in 4D Printed Energy-Absorbing Metamaterials and Structures. Virtual Phys. Prototyp. 2023, 18, 1. DOI: 10.1080/17452759.2023.2197436.
  • Uribe-Lam, E.; Treviño-Quintanilla, C. D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of Additive Manufacturing for the Fabrication of Cellular and Lattice Materials: A Review. Mater. Manuf. Process. 2021, 36(3), 257–280. DOI: 10.1080/10426914.2020.1819544.
  • Shakibania, S.; Ghazanfari, L.; Raeeszadeh-Sarmazdeh, M.; Khakbiz, M. Medical Application of Biomimetic 4D Printing. Drug. Dev. Ind. Pharm. 2021, 47(4), 521–534. DOI: 10.1080/03639045.2020.1862179.
  • Patdiya, J.; Kandasubramanian, B. Progress in 4D Printing of Stimuli Responsive Materials. Polym-Plast. Tech. Mat. 2021, 60(17), 1845–1883. DOI: 10.1080/25740881.2021.1934016.
  • Hoa, S. Factors Affecting the Properties of Composites Made by 4D Printing (Moldless Composites Manufacturing). Adv. Manuf.: Polym. Compos. Sci. 2017, 3(3), 101–109. DOI: 10.1080/20550340.2017.1355519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.