408
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on wire arc additive manufacturing based on cold metal transfer

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1315-1341 | Received 08 Nov 2023, Accepted 19 Feb 2024, Published online: 29 Feb 2024

References

  • Kumar, N.; Bhavsar, H.; Mahesh, P. V. S.; Srivastava, A. K.; Bora, B. J.; Saxena, A.; Dixit, A. R. Wire Arc Additive Manufacturing – a Revolutionary Method in Additive Manufacturing. Mater. Chem. Phys. 2022, 285, 126144. DOI: 10.1016/J.MATCHEMPHYS.2022.126144.
  • Dilberoglu, U. M.; Gharehpapagh, B.; Yaman, U.; Dolen, M. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manuf. 2017, 11, 545–554. DOI: 10.1016/J.PROMFG.2017.07.148.
  • Al Noman, A.; Kumar, B. K.; Dickens, T. Field Assisted Additive Manufacturing for Polymers and Metals: Materials and Methods. Virtual Phys. Prototyp. 2023, 18(1), 1. DOI: 10.1080/17452759.2023.2256707.
  • Piedra-Cascón, W.; Krishnamurthy, V. R.; Att, W.; Revilla-León, M. 3D Printing Parameters, Supporting Structures, Slicing, and Post-Processing Procedures of Vat-Polymerization Additive Manufacturing Technologies: A Narrative Review. J. Dent. 2021, 109, 103630. DOI: 10.1016/J.JDENT.2021.103630.
  • Guo, N.; Leu, M. C. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013, 8(3), 215–243. DOI: 10.1007/s11465-013-0248-8.
  • Thomas-Seale, L. E. J.; Kirkman-Brown, J. C.; Attallah, M. M.; Espino, D. M.; Shepherd, D. E. T. The Barriers to the Progression of Additive Manufacture: Perspectives from UK Industry. Int. J. Prod. Econ. 2018, 198, 104–118. DOI: 10.1016/J.IJPE.2018.02.003.
  • Rosli, N. A.; Alkahari, M. R.; Bin Abdollah, M. F.; Maidin, S.; Ramli, F. R.; Herawan, S. G. Review on Effect of Heat Input for Wire Arc Additive Manufacturing Process. J. Mater. Res. Technol. 2021, 11, 2127–2145. DOI: 10.1016/J.JMRT.2021.02.002.
  • Carroll, B. E.; Palmer, T. A.; Beese, A. M. Anisotropic Tensile Behavior of Ti–6Al–4V Components Fabricated with Directed Energy Deposition Additive Manufacturing. Acta Mater. 2015, 87, 309–320. DOI: 10.1016/J.ACTAMAT.2014.12.054.
  • Popovich, V. A.; Borisov, E. V.; Popovich, A. A.; Sufiiarov, V. S.; Masaylo, D. V.; Alzina, L. Functionally Graded Inconel 718 Processed by Additive Manufacturing: Crystallographic Texture, Anisotropy of Microstructure and Mechanical Properties. Mater. Des. 2017, 114, 441–449. DOI: 10.1016/J.MATDES.2016.10.075.
  • Williams, S. W.; Martina, F.; Addison, A. C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + Arc Additive Manufacturing. Mater. Sci. Technol. 2016, 32(7), 641–647. DOI: 10.1179/1743284715Y.0000000073.
  • Chandra, M.; Rajak, S.; Kek, V. Deep Learning-Based Framework for the Observation of Real-Time Melt Pool and Detection of Anomaly in Wire-Arc Additive Manufacturing. Mater. Manuf. Processes. 2023, 2023, 1–17. DOI: 10.1080/10426914.2023.2254386.
  • Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement. J. Manuf. Process. 2018, 35, 127–139. DOI: 10.1016/J.JMAPRO.2018.08.001.
  • Wu, B.; Pan, Z.; Li, S.; Cuiuri, D.; Ding, D.; Li, H. The Anisotropic Corrosion Behaviour of Wire Arc Additive Manufactured Ti-6Al-4V Alloy in 3.5% NaCl Solution. Corros. Sci. 2018, 137, 176–183. DOI: 10.1016/J.CORSCI.2018.03.047.
  • Sarathchandra, D. T.; Davidson, M. J.; Visvanathan, G. Parameters Effect on SS304 Beads Deposited by Wire Arc Additive Manufacturing. Mater. Manuf. Processes. 2020, 35(7), 852–858. DOI: 10.1080/10426914.2020.1743852.
  • Pattanayak, S.; Sahoo, S. K.; Sahoo, A. K. Effect of Electrode Materials and Process Parameters on Deposition Characteristics During GMAW-AM. Mater. Manuf. Processes. 2023, 38(14), 1809–1822. DOI: 10.1080/10426914.2023.2217895.
  • Hamrani, A.; Bouarab, F. Z.; Agarwal, A.; Ju, K.; Akbarzadeh, H. Advancements and Applications of Multiple Wire Processes in Additive Manufacturing: A Comprehensive Systematic Review. Virtual Phys. Prototyp. 2023, 18(1), 1. DOI: 10.1080/17452759.2023.2273303.
  • Cunningham, C. R.; Flynn, J. M.; Shokrani, A.; Dhokia, V.; Newman, S. T. Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 22, 672–686. DOI: 10.1016/J.ADDMA.2018.06.020.
  • Mukhrish, Y. E.; Asad, M.; Khan, M. A. A.; Djavanroodi, F. Experimental Investigations on Wire Arc Additive Manufacturing Process Using an Inconel 625 Alloy Wire. Mech. Adv. Mat. Struct. 2023, 2023, 1–12. DOI: 10.1080/15376494.2023.2256336.
  • Tomar, B.; Shiva, S.; Nath, T. A Review on Wire Arc Additive Manufacturing: Processing Parameters, Defects, Quality Improvement and Recent Advances. Mater. Today Commun. 2022, 31, 103739. DOI: 10.1016/J.MTCOMM.2022.103739.
  • Tomar, B.; Shiva, S. Cold Metal Transfer-Based Wire Arc Additive Manufacturing. J. Braz. Soc. Mech. Sci. Eng. 2023, 45(3), 157. DOI: 10.1007/s40430-023-04084-2.
  • Pattanayak, S.; Sahoo, S. K. Gas Metal Arc Welding Based Additive Manufacturing—A Review. CIRP J. Manuf. Sci. Technol. 2021, 33, 398–442. DOI: 10.1016/J.CIRPJ.2021.04.010.
  • Wang, F.; Williams, S.; Rush, M. Morphology Investigation on Direct Current Pulsed Gas Tungsten Arc Welded Additive Layer Manufactured Ti6Al4V Alloy. Int. J. Adv. Manuf. Technol. 2011, 57(5–8), 597–603. DOI: 10.1007/s00170-011-3299-1.
  • Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests. Int. J. Adv. Manuf. Technol. 2015, 81(1–4), 465–481. DOI: 10.1007/s00170-015-7077-3.
  • Oliveira, J. P.; Crispim, B.; Zeng, Z.; Omori, T.; Braz Fernandes, F. M.; Miranda, R. M. Microstructure and Mechanical Properties of Gas Tungsten Arc Welded Cu-Al-Mn Shape Memory Alloy Rods. J. Mater. Process. Technol. 2019, 271, 93–100. DOI: 10.1016/J.JMATPROTEC.2019.03.020.
  • Shi, J.; Li, F.; Chen, S.; Zhao, Y.; Tian, H. Effect of In-Process Active Cooling on Forming Quality and Efficiency of Tandem GMAW–Based Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2019, 101(5–8), 1349–1356. DOI: 10.1007/s00170-018-2927-4.
  • Artaza, T.; Suárez, A.; Veiga, F.; Braceras, I.; Tabernero, I.; Larrañaga, O.; Lamikiz, A. Wire Arc Additive Manufacturing Ti6Al4V Aeronautical Parts Using Plasma Arc Welding: Analysis of Heat-Treatment Processes in Different Atmospheres. J. Mater. Res. Technol. 2020, 9(6), 15454–15466. DOI: 10.1016/J.JMRT.2020.11.012.
  • Le, V. T.; Mai, D. S.; Paris, H. Influences of the Compressed Dry Air-Based Active Cooling on External and Internal Qualities of Wire-Arc Additive Manufactured Thin-Walled SS308L Components. J. Manuf. Process. 2021, 62, 18–27. DOI: 10.1016/j.jmapro.2020.11.046.
  • Zheng, Y.; Yu, Z.; Xie, J.; Chen, J.; Yu, C.; Xu, J.; Lu, H. A Numerical Model-Based Deposition Strategy for Heat Input Regulation During Plasma Arc-Based Additive Manufacturing. Addit. Manuf. 2022, 58, 102986. DOI: 10.1016/J.ADDMA.2022.102986.
  • Wang, Y.; Chen, X.; Shen, Q.; Su, C.; Zhang, Y.; Jayalakshmi, S.; Singh, R. A. Effect of Magnetic Field on the Microstructure and Mechanical Properties of Inconel 625 Superalloy Fabricated by Wire Arc Additive Manufacturing. J. Manuf. Process. 2021, 64, 10–19. DOI: 10.1016/J.JMAPRO.2021.01.008.
  • Suryakumar, S.; Karunakaran, K. P.; Bernard, A.; Chandrasekhar, U.; Raghavender, N.; Sharma, D. Weld Bead Modeling and Process Optimization in Hybrid Layered Manufacturing. Comput. Aided Des. 2011, 43(4), 331–344. DOI: 10.1016/J.CAD.2011.01.006.
  • Farabi, E.; Klein, T.; Schnall, M.; Primig, S. Effects of High Deposition Rate During Cold Metal Transfer Additive Manufacturing on Microstructure and Properties of Ti-6Al-4V. Addit. Manuf. 2023, 71, 103592. DOI: 10.1016/J.ADDMA.2023.103592.
  • Hu, Z.; Hua, L.; Ni, M.; Ji, F.; Qin, X. Microstructure and Mechanical Properties of Directed Energy Deposition-Arc/wire Bimetallic Hierarchical Structures of Hot-Working Tool Steel and Martensitic Stainless Steel. Addit. Manuf. 2023, 67, 103495. DOI: 10.1016/J.ADDMA.2023.103495.
  • Chakkravarthy, V.; Jerome, S. Printability of Multiwalled SS 316L by Wire Arc Additive Manufacturing Route with Tunable Texture. Mater. Lett. 2020, 260, 126981. DOI: 10.1016/J.MATLET.2019.126981.
  • Yang, S.; Zhang, J.; Lian, J.; Lei, Y. Welding of Aluminum Alloy to Zinc Coated Steel by Cold Metal Transfer. Mater. Des. 2013, 49, 602–612. DOI: 10.1016/J.MATDES.2013.01.045.
  • Zhang, H. T.; Feng, J. C.; He, P.; Zhang, B. B.; Chen, J. M.; Wang, L. The Arc Characteristics and Metal Transfer Behaviour of Cold Metal Transfer and Its Use in Joining Aluminium to Zinc-Coated Steel. Mater. Sci. Eng. A. 2009, 499(1–2), 111–113. DOI: 10.1016/J.MSEA.2007.11.124.
  • Li, Y.; Su, C.; Zhu, J. Comprehensive Review of Wire Arc Additive Manufacturing: Hardware System, Physical Process, Monitoring, Property Characterization, Application and Future Prospects. Results Eng. 2022, 13, 100330. DOI: 10.1016/j.rineng.2021.100330.
  • Wang, P.; Zhang, H.; Zhu, H.; Li, Q.; Feng, M. Wire-Arc Additive Manufacturing of AZ31 Magnesium Alloy Fabricated by Cold Metal Transfer Heat Source: Processing, Microstructure, and Mechanical Behavior. J. Mater. Process. Technol. 2021, 288, 116895. DOI: 10.1016/j.jmatprotec.2020.116895.
  • Suárez, A.; Aldalur, E.; Veiga, F.; Artaza, T.; Tabernero, I.; Lamikiz, A. Wire Arc Additive Manufacturing of an Aeronautic Fitting with Different Metal Alloys: From the Design to the Part. J. Manuf. Process. 2021, 64, 188–197. DOI: 10.1016/J.JMAPRO.2021.01.012.
  • Selvamani, S. T.; Yoganandan, G.; Bakkiyaraj, M.; Sivaraman, V. Influence of Heat Input on Cold Metal Transfer Welded Joints. Mater. Manuf. Processes. 2022, 37(13), 1555–1565. DOI: 10.1080/10426914.2022.2030877.
  • Bless, S. J. Drop Transfer in Short-Circuit Welding. J. Phys D: Appl Phys. 1974, 7(4), 306. DOI: 10.1088/0022-3727/7/4/306.
  • Wu, W.; Xu, W.; Xue, J.; Yao, P. Effect of Cooling and CMT Mode Process on Additive Manufacturing. Mater. Manuf. Processes. 2022, 37(11), 1298–1309. DOI: 10.1080/10426914.2021.2006221.
  • Derekar, K. S. A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium. Mater. Sci. Technol. 2018, 34(8), 895–916. DOI: 10.1080/02670836.2018.1455012.
  • Yang, X.; Liu, J.; Wang, Z.; Lin, X.; Liu, F.; Huang, W.; Liang, E. Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured AZ31 Magnesium Alloy Using Cold Metal Transfer Process. Mater. Sci. Eng. A. 2020, 774, 138942. DOI: 10.1016/j.msea.2020.138942.
  • Tian, Y.; Shen, J.; Hu, S.; Wang, Z.; Gou, J. Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V and AlSi5 Dissimilar Alloys Using Cold Metal Transfer Welding. J. Manuf. Process. 2019, 46, 337–344. DOI: 10.1016/j.jmapro.2019.09.006.
  • Srinivasan, D.; Sevvel, P.; John Solomon, I.; Tanushkumaar, P. A Review on Cold Metal Transfer (CMT) Technology of Welding. Mater. Today Proc. 2022, 64, 108–115. DOI: 10.1016/J.MATPR.2022.04.016.
  • Pickin, C. G.; Young, K. Evaluation of Cold Metal Transfer (CMT) Process for Welding Aluminium Alloy. Sci. Technol. Weld. Joining. 2006, 11(5), 583–585. DOI: 10.1179/174329306X120886.
  • Selvi, S.; Vishvaksenan, A.; Rajasekar, E. Cold Metal Transfer (CMT) Technology - an Overview. Defence Technol. 2018, 14(1), 28–44. DOI: 10.1016/J.DT.2017.08.002.
  • Feng, J.; Zhang, H.; He, P. The CMT Short-Circuiting Metal Transfer Process and Its Use in Thin Aluminium Sheets Welding. Mater. Des. 2009, 30(5), 1850–1852. DOI: 10.1016/J.MATDES.2008.07.015.
  • Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R. Effect of Correction Parameters on Deposition Characteristics in Cold Metal Transfer Welding. Mater. Manuf. Processes. 2019, 34(11), 1205–1216. DOI: 10.1080/10426914.2019.1628260.
  • Cornacchia, G.; Cecchel, S.; Panvini, A. A Comparative Study of Mechanical Properties of Metal Inert Gas (MIG)-Cold Metal Transfer (CMT) and Fiber Laser-MIG Hybrid Welds for 6005A T6 Extruded Sheet. int. J. Adv. Manuf. Technol. 2018, 94(5–8), 2017–2030. DOI: 10.1007/s00170-017-0914-9.
  • Kannan, R. A.; Shanmugam, N. S.; Naveenkumar, S. Effect of Arc Length Correction on Weld Bead Geometry and Mechanical Properties of AISI 316L Weldments by Cold Metal Transfer (CMT) Process. Mater. Today Proc. 2019, 18, 3916–3921. DOI: 10.1016/J.MATPR.2019.07.331.
  • Girinath, B.; Shanmugam, N. S.; Sathiyanarayanan, C. Studies on Influence of Torch Orientation on Microstructure, Mechanical Properties and Formability of AA5052 CMT Welded Blanks. Arch. Civil Mech. Eng. 2020, 20(1), 15. DOI: 10.1007/s43452-020-00021-5.
  • Mezrag, B.; Deschaux-Beaume, F.; Benachour, M. Control of Mass and Heat Transfer for Steel/Aluminium Joining Using Cold Metal Transfer Process. Sci. Technol. Weld. Joining. 2015, 20(3), 189–198. DOI: 10.1179/1362171814Y.0000000271.
  • Balasubramanian, M.; Choudary, M. V.; Nagaraja, A.; Sai, K. O. C. Cold Metal Transfer Process – a Review. Mater. Today Proc. 2020, 33, 543–549. DOI: 10.1016/J.MATPR.2020.05.225.
  • Motwani, A.; Kumar, A.; Puri, Y.; Lautre, N. K. Mechanical Characteristics and Microstructural Investigation of CMT Deposited Bimetallic SS316LSi-IN625 Thin Wall for WAAM. Welding World. 2023, 67(4), 967–980. DOI: 10.1007/s40194-022-01403-4.
  • Manjhi, S. K.; Sekar, P.; Bontha, S.; Balan, A. S. S. Effect of CMT-WAAM Process Parameters on Bead Geometry, Microstructure and Mechanical Properties of AZ31 Mg Alloy. J. Mater. Eng. Perform. 2023. DOI: 10.1007/s11665-023-08498-w.
  • Koppu, A. K.; Lautre, N. K.; Motwani, A.; Puri, Y. Mechanical and Microstructure Investigation of TiC-Inoculated SS316LSi Thin Wall Deposited by CMT-WAAM. Transactions Of The Indian Institute Of Metals. 2023, 76(8), 2307–2314. DOI: 10.1007/s12666-023-02943-z.
  • Senthil, T. S.; Babu, S. R.; Puviyarasan, M.; Balachandar, V. S. Experimental Investigations on the Multi-Layered SS316L Wall Fabricated by CMT-Based WAAM: Mechanical and Microstructural Studies. J. Alloys Metall. Sys. 2023, 2, 100013. DOI: 10.1016/j.jalmes.2023.100013.
  • Campatelli, G.; Campanella, D.; Barcellona, A.; Fratini, L.; Grossi, N.; Ingarao, G. M. Microstructural, Mechanical and Energy Demand Characterization of Alternative WAAM Techniques for Al-Alloy Parts Production. CIRP J. Manuf. Sci. Technol. 2020, 31, 492–499. DOI: 10.1016/J.CIRPJ.2020.08.001.
  • Gu, J.; Ding, J.; Williams, S. W.; Gu, H.; Ma, P.; Zhai, Y. The Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on Porosity in Additively Manufactured Aluminum Alloys. J. Mater. Process. Technol. 2016, 230, 26–34. DOI: 10.1016/J.JMATPROTEC.2015.11.006.
  • Chang, T.; Fang, X.; Liu, G.; Zhang, H.; Huang, K. Wire and Arc Additive Manufacturing of Dissimilar 2319 and 5B06 Aluminum Alloys. J. Mater. Sci. Technol. 2022, 124, 65–75. DOI: 10.1016/J.JMST.2022.02.024.
  • Vishnukumar, M.; Pramod, R.; Rajesh Kannan, A. Wire Arc Additive Manufacturing for Repairing Aluminium Structures in Marine Applications. Mater. Lett. 2021, 299, 130112. DOI: 10.1016/J.MATLET.2021.130112.
  • Su, C.; Chen, X.; Gao, C.; Wang, Y. Effect of Heat Input on Microstructure and Mechanical Properties of Al-Mg Alloys Fabricated by WAAM. Appl. Surf. Sci. 2019, 486, 431–440. DOI: 10.1016/J.APSUSC.2019.04.255.
  • Klein, T.; Arnoldt, A.; Lahnsteiner, R.; Schnall, M. Microstructure and Mechanical Properties of a Structurally Refined Al–Mg–Si Alloy for Wire-Arc Additive Manufacturing. Mater. Sci. Eng. A. 2022, 830, 142318. DOI: 10.1016/J.MSEA.2021.142318.
  • Bi, J.; Shen, J.; Hu, S.; Zhen, Y.; Yin, F.; Bu, X. Microstructure and Mechanical Properties of AZ91 Mg Alloy Fabricated by Cold Metal Transfer Additive Manufacturing. Mater. Lett. 2020, 276, 128185. DOI: 10.1016/J.MATLET.2020.128185.
  • Zhang, X.; Zhou, Q.; Wang, K.; Peng, Y.; Ding, J.; Kong, J.; Williams, S. Study on Microstructure and Tensile Properties of High Nitrogen Cr-Mn Steel Processed by CMT Wire and Arc Additive Manufacturing. Mater. Des. 2019, 166, 107611. DOI: 10.1016/J.MATDES.2019.107611.
  • Wang, C.; Liu, T. G.; Zhu, P.; Lu, Y. H.; Shoji, T. Study on Microstructure and Tensile Properties of 316L Stainless Steel Fabricated by CMT Wire and Arc Additive Manufacturing. Mater. Sci. Eng. A. 2020, 796, 140006. DOI: 10.1016/J.MSEA.2020.140006.
  • Nikam, P. P.; Arun, D.; Ramkumar, K. D.; Sivashanmugam, N. Microstructure Characterization and Tensile Properties of CMT-Based Wire Plus Arc Additive Manufactured ER2594. Mater. Charact. 2020, 169, 110671. DOI: 10.1016/J.MATCHAR.2020.110671.
  • Nagasai, B. P.; Malarvizhi, S.; Balasubramanian, V. Effect of Welding Processes on Mechanical and Metallurgical Characteristics of Carbon Steel Cylindrical Components Made by Wire Arc Additive Manufacturing (WAAM) Technique. CIRP J. Manuf. Sci. Technol. 2022, 36, 100–116. DOI: 10.1016/J.CIRPJ.2021.11.005.
  • Ermakova, A.; Mehmanparast, A.; Ganguly, S.; Razavi, J.; Berto, F. Investigation of Mechanical and Fracture Properties of Wire and Arc Additively Manufactured Low Carbon Steel Components. Theor. Appl. Fract. Mech. 2020, 109, 102685. DOI: 10.1016/J.TAFMEC.2020.102685.
  • Xiong, Y. B.; Wen, D. X.; Zheng, Z. Z.; Li, J. J. Effect of Interlayer Temperature on Microstructure Evolution and Mechanical Performance of Wire Arc Additive Manufactured 300M Steel. Mater. Sci. Eng. A. 2022, 831, 142351. DOI: 10.1016/J.MSEA.2021.142351.
  • Osintsev, K. A.; Konovalov, S. V.; Gromov, V. E.; Ivanov, Y. F.; Panchenko, I. A. Microstructure and Mechanical Properties of Non-Equiatomic Co25.4Cr15Fe37.9Mn3.5Ni16.8Si1.4 High-Entropy Alloy Produced by Wire-Arc Additive Manufacturing. Mater. Lett. 2022, 312, 131675. DOI: 10.1016/J.MATLET.2022.131675.
  • Zhang, T.; Li, H.; Gong, H.; Ding, J.; Wu, Y.; Diao, C.; Zhang, X.; Williams, S. Hybrid Wire - Arc Additive Manufacture and Effect of Rolling Process on Microstructure and Tensile Properties of Inconel 718. J. Mater. Process. Technol. 2022, 299, 117361. DOI: 10.1016/J.JMATPROTEC.2021.117361.
  • Choudhury, S. S.; Marya, S. K.; Amirthalingam, M. Improving Arc Stability During Wire Arc Additive Manufacturing of Thin-Walled Titanium Components. J. Manuf. Process. 2021, 66, 53–69. DOI: 10.1016/j.jmapro.2021.03.033.
  • Panchenko, O.; Kurushkin, D.; Mushnikov, I.; Khismatullin, A.; Popovich, A. A High-Performance WAAM Process for Al–Mg–Mn Using Controlled Short-Circuiting Metal Transfer at Increased Wire Feed Rate and Increased Travel Speed. Mater. Des. 2020, 195, 109040. DOI: 10.1016/J.MATDES.2020.109040.
  • Zheng, J.; Chen, S.; Jiang, L.; Ye, X. X.; Xu, C.; Li, Z. Effect of Carbon Content on the Microstructure and Mechanical Properties of NiCrfe-7A Alloys Synthesized by Wire Arc Additive Manufacturing. Mater. Sci. Eng. A. 2022, 842, 142925. DOI: 10.1016/J.MSEA.2022.142925.
  • Ji, F.; Qin, X.; Hu, Z.; Xiong, X.; Ni, M.; Wu, M. Influence of Ultrasonic Vibration on Molten Pool Behavior and Deposition Layer Forming Morphology for Wire and Arc Additive Manufacturing. Int. Commun. Heat Mass Transfer. 2022, 130, 105789. DOI: 10.1016/J.ICHEATMASSTRANSFER.2021.105789.
  • Li, Y.; Huang, X.; Horváth, I.; Zhang, G. GMAW-Based Additive Manufacturing of Inclined Multi-Layer Multi-Bead Parts with Flat-Position Deposition. J. Mater. Process. Technol. 2018, 262, 359–371. DOI: 10.1016/j.jmatprotec.2018.07.010.
  • Palmeira Belotti, L.; van Dommelen, J. A. W.; Geers, M. G. D.; Goulas, C.; Ya, W.; Hoefnagels, J. P. M. Microstructural Characterisation of Thick-Walled Wire Arc Additively Manufactured Stainless Steel. J. Mater. Process. Technol. 2022, 299, 117373. DOI: 10.1016/J.JMATPROTEC.2021.117373.
  • Warsi, R.; Kazmi, K. H.; Chandra, M. Mechanical Properties of Wire and Arc Additive Manufactured Component Deposited by a CNC Controlled GMAW. Mater. Today Proc. 2022, 56, 2818–2825. DOI: 10.1016/J.MATPR.2021.10.114.
  • Vinoth, V.; Sathiyamurthy, S.; Natarajan, U.; Venkatkumar, D.; Prabhakaran, J.; Sanjeevi Prakash, K. Examination of Microstructure Properties of AISI 316L Stainless Steel Fabricated by Wire Arc Additive Manufacturing. Mater. Today Proc. 2022, 66, 702–706. DOI: 10.1016/J.MATPR.2022.04.011.
  • James, W. S.; Ganguly, S.; Pardal, G. High Temperature Performance of Wire-Arc Additive Manufactured Inconel 718. Sci. Rep. 2023, 13(1), 4541. DOI: 10.1038/s41598-023-29026-9.
  • Baufeld, B. Mechanical Properties of INCONEL 718 Parts Manufactured by Shaped Metal Deposition (SMD). J. Mater. Eng. Perform. 2012, 21(7), 1416–1421. DOI: 10.1007/s11665-011-0009-y.
  • Ghaffari, M.; Vahedi Nemani, A.; Nasiri, A. Microstructure and Mechanical Behavior of PH 13–8Mo Martensitic Stainless Steel Fabricated by Wire Arc Additive Manufacturing. Addit. Manuf. 2022, 49, 102374. DOI: 10.1016/J.ADDMA.2021.102374.
  • Kannan, A. R.; Kumar, S. M.; Pramod, R.; Shanmugam, N. S.; Vishnukumar, M.; Channabasavanna, S. G. Microstructure and Corrosion Resistance of Ni-Cu Alloy Fabricated Through Wire Arc Additive Manufacturing. Mater. Lett. 2022, 308, 131262. DOI: 10.1016/J.MATLET.2021.131262.
  • Zhou, J.; Jia, C.; Guo, M.; Chen, M.; Gao, J.; Wu, C. Investigation of the WAAM Processes Features Based on an Indirect Arc Between Two Non-Consumable Electrodes. Vacuum. 2021, 183, 109851. DOI: 10.1016/J.VACUUM.2020.109851.
  • Rodrigues, T. A.; Duarte, V. R.; Miranda, R. M.; Santos, T. G.; Oliveira, J. P. Ultracold-Wire and Arc Additive Manufacturing (UC-WAAM). J. Mater. Process. Technol. 2021, 296, 117196. DOI: 10.1016/J.JMATPROTEC.2021.117196.
  • Gokhale, N. P.; Kala, P. Thermal Analysis of TIG-WAAM Based Metal Deposition Process Using Finite Element Method. Mater. Today Proc. 2021, 44, 453–459. DOI: 10.1016/J.MATPR.2020.09.756.
  • Tripathi, U.; Saini, N.; Mulik, R. S.; Mahapatra, M. M. Effect of Build Direction on the Microstructure Evolution and Their Mechanical Properties Using GTAW Based Wire Arc Additive Manufacturing. CIRP J. Manuf. Sci. Technol. 2022, 37, 103–109. DOI: 10.1016/J.CIRPJ.2022.01.010.
  • Chen, X.; Han, J.; Wang, J.; Cai, Y.; Zhang, G.; Lu, L.; Xin, Y.; Tian, Y. A Functionally Graded Material from TC4 to 316L Stainless Steel Fabricated by Double-Wire + Arc Additive Manufacturing. Mater. Lett. 2021, 300, 130141. DOI: 10.1016/J.MATLET.2021.130141.
  • Xu, T.; Cui, Y.; Ma, S.; Wang, J.; Liu, C. Exploring the Inclined Angle Limit of Fabricating Unsupported Rods Structures by Pulse Hot-Wire Arc Additive Manufacturing. J. Mater. Process. Technol. 2021, 295, 117160. DOI: 10.1016/j.jmatprotec.2021.117160.
  • Wang, L.; Zhang, Y.; Hua, X.; Shen, C.; Li, F.; Huang, Y.; Ding, Y.; Zhang, P.; Lu, Q.; Zhang, T., et al., Twin-Wire Plasma Arc Additive Manufacturing of the Ti–45Al Titanium Aluminide: Processing, Microstructures and Mechanical Properties. Intermetallics (Barking). 2021; 136, 107277. DOI:10.1016/J.INTERMET.2021.107277
  • Zhang, Y.; Wu, S.; Cheng, F. A Duplex Stainless Steel (DSS) with Striking Tensile Strength and Corrosion Resistance Produced Through Wire Arc-Additive Manufacturing (WAAM) Using a Newly Developed Flux-Cored Wire. Mater. Lett. 2022, 313, 131760. DOI: 10.1016/j.matlet.2022.131760.
  • Zhang, Y.; Cheng, F.; Wu, S. Improvement of Pitting Corrosion Resistance of Wire Arc Additive Manufactured Duplex Stainless Steel Through Post-Manufacturing Heat-Treatment. Mater. Charact. 2021, 171, 110743. DOI: 10.1016/J.MATCHAR.2020.110743.
  • Belotti, L. P.; van Dommelen, J. A. W.; Geers, M. G. D.; Ya, W.; Hoefnagels, J. P. M. Influence of the Printing Strategy on the Microstructure and Mechanical Properties of Thick-Walled Wire Arc Additive Manufactured Stainless Steels. J. Mater. Process. Technol. 2024, 324, 118275. DOI: 10.1016/J.JMATPROTEC.2023.118275.
  • Koli, Y.; Yuvaraj, N.; Sivanandam, A.; Vipin, V. Control of Humping Phenomenon and Analyzing Mechanical Properties of Al–Si Wire-Arc Additive Manufacturing Fabricated Samples Using Cold Metal Transfer Process. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2022, 236(2), 984–996. DOI: 10.1177/0954406221998402.
  • Haribaskar, R.; Kumar, T. S.; Tamiloli, N. Surface Integrity of Additively Manufactured Inconel-718 by Peening Approaches. Mater. Manuf. Processes. 2023, 38(8), 1009–1019. DOI: 10.1080/10426914.2022.2146716.
  • Pollock, T. M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. J. Propuls. Power. 2006, 22(2), 361–374. DOI: 10.2514/1.18239.
  • Mukherjee, T. Recent Progress in Process, Structure, Properties, and Performance in Additive Manufacturing. Sci. Technol. Weld. Joining. 2023, 28(9), 941–945. DOI: 10.1080/13621718.2023.2253588.
  • Xu, M.; Chen, Y.; Zhang, T.; Xie, J.; Wei, K.; Wang, S.; Yin, L. Effect of Post-Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Superalloy Fabricated by Ultrasonic-Assisted Wire Arc Additive Manufacturing. Mater. Sci. Eng. A. 2023, 863, 144548. DOI: 10.1016/J.MSEA.2022.144548.
  • Sujan, G. K.; Gazder, A. A.; Awannegbe, E.; Li, H.; Pan, Z.; Liang, D.; Alam, N. Hot Deformation Behavior and Microstructural Evolution of Wire-Arc Additively Fabricated Inconel 718 Superalloy. Metall. Mater. Trans. A. 2023, 54(1), 226–240. DOI: 10.1007/s11661-022-06863-3.
  • Yangfan, W.; Xizhang, C.; Chuanchu, S. Microstructure and Mechanical Properties of Inconel 625 Fabricated by Wire-Arc Additive Manufacturing. Surf. Coat. Technol. 2019, 374, 116–123. DOI: 10.1016/J.SURFCOAT.2019.05.079.
  • Xu, F.; Lv, Y.; Liu, Y.; Shu, F.; He, P.; Xu, B. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy During Pulsed Plasma Arc Deposition Process. J. Mater. Sci. Technol. 2013, 29(5), 480–488. DOI: 10.1016/J.JMST.2013.02.010.
  • Safarzade, A.; Sharifitabar, M.; Shafiee Afarani, M. Effects of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Wire Arc Additive Manufacturing Process. Trans. Nonferrous Met. Soc. China. 2020, 30(11), 3016–3030. DOI: 10.1016/S1003-6326(20)65439-5.
  • Ravi, G.; Murugan, N.; Arulmani, R. Microstructure and Mechanical Properties of Inconel-625 Slab Component Fabricated by Wire Arc Additive Manufacturing. Mater. Sci. Technol. 2020, 36(16), 1785–1795. DOI: 10.1080/02670836.2020.1836737.
  • Xu, X.; Ding, J.; Ganguly, S.; Williams, S. Investigation of Process Factors Affecting Mechanical Properties of INCONEL 718 Superalloy in Wire + Arc Additive Manufacture Process. J. Mater. Process. Technol. 2019, 265, 201–209. DOI: 10.1016/J.JMATPROTEC.2018.10.023.
  • Wang, K.; Liu, Y.; Sun, Z.; Lin, J.; Lv, Y.; Xu, B. Microstructural Evolution and Mechanical Properties of Inconel 718 Superalloy Thin Wall Fabricated by Pulsed Plasma Arc Additive Manufacturing. J. Alloys Compd. 2020, 819, 152936. DOI: 10.1016/J.JALLCOM.2019.152936.
  • Lin, Z.; Song, K.; Yu, X. A Review on Wire and Arc Additive Manufacturing of Titanium Alloy. J. Manuf. Process. 2021, 70, 24–45. DOI: 10.1016/j.jmapro.2021.08.018.
  • Xiong, J.; Liu, G.; Yu, Y. Fabricating TiAl Alloys with Various Compositions by Twin-Wire Arc AM. Mater. Manuf. Processes. 2024, 39(3), 310–319. DOI: 10.1080/10426914.2023.2195905.
  • Froes, F. H.; Whittaker, M. Titanium and Its Alloys. Encycl. Mater. Met. Alloys, 2022, 287–293. DOI: 10.1016/B978-0-12-819726-4.00066-1.
  • Zhou, S.; Xie, H.; Ni, J.; Yang, G.; Qin, L.; Guo, X. Metal Transfer Behavior During CMT-Based Wire Arc Additive Manufacturing of Ti-6Al-4V Alloy. J. Manuf. Process. 2022, 82, 159–173. DOI: 10.1016/J.JMAPRO.2022.07.063.
  • Ding, D.; Wu, B.; Pan, Z.; Qiu, Z.; Li, H. Wire Arc Additive Manufacturing of Ti6AL4V Using Active Interpass Cooling. Mater. Manuf. Processes. 2020, 35(7), 845–851. DOI: 10.1080/10426914.2020.1732414.
  • Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H. Effects of Heat Accumulation on Microstructure and Mechanical Properties of Ti6Al4V Alloy Deposited by Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 23, 151–160. DOI: 10.1016/J.ADDMA.2018.08.004.
  • Huang, J.; Liu, G.; Yu, X.; Wu, H.; Huang, Y.; Yu, S.; Fan, D. Microstructure Regulation of Titanium Alloy Functionally Gradient Materials Fabricated by Alternating Current Assisted Wire Arc Additive Manufacturing. Mater. Des. 2022, 218, 110731. DOI: 10.1016/J.MATDES.2022.110731.
  • Lu, T.; Liu, C.; Li, Z.; Wu, Q.; Wang, J.; Xu, T.; Liu, J.; Wang, H.; Ma, S. Hot-Wire Arc Additive Manufacturing Ti–6.5Al–2Zr–1Mo–1V Titanium Alloy: Pore Characterization, Microstructural Evolution, and Mechanical Properties. J. Alloys Compd. 2020, 817, 153334. DOI: 10.1016/J.JALLCOM.2019.153334.
  • Ng, C. H.; Bermingham, M. J.; Kent, D.; Dargusch, M. S. High Stability and High Strength β-Titanium Alloys for Additive Manufacturing. Mater. Sci. Eng. A. 2021, 816, 141326. DOI: 10.1016/J.MSEA.2021.141326.
  • Schmidt, P.; El-Chaikh, A.; Christ, H.-J. Effect of Duplex Aging on the Initiation and Propagation of Fatigue Cracks in the Solute-Rich Metastable β Titanium Alloy Ti 38-644. Metall. Mater. Trans. A. 2011, 42(9), 2652–2667. DOI: 10.1007/s11661-011-0662-7.
  • Langelandsvik, G.; Akselsen, O. M.; Furu, T.; Roven, H. J. Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing. Materials. 2021, 14(18), 5370. DOI: 10.3390/ma14185370.
  • Brice, C.; Shenoy, R.; Kral, M.; Buchannan, K. Precipitation Behavior of Aluminum Alloy 2139 Fabricated Using Additive Manufacturing. Mater. Sci. Eng. A. 2015, 648, 9–14. DOI: 10.1016/J.MSEA.2015.08.088.
  • Chen, X.; Su, C.; Wang, Y.; Siddiquee, A. N.; Sergey, K.; Jayalakshmi, S.; Singh, R. A. Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) System. J. Synch. Investig. 2018, 12(6), 1278–1284. DOI: 10.1134/S102745101901004X.
  • Wei, Y.; Liu, F.; Liu, F.; Yu, D.; You, Q.; Huang, C.; Wang, Z.; Jiang, W.; Lin, X.; Hu, X. Effect of Arc Oscillation on Porosity and Mechanical Properties of 2319 Aluminum Alloy Fabricated by CMT-Wire Arc Additive Manufacturing. J. Mater. Res. Technol. 2023, 24, 3477–3490. DOI: 10.1016/J.JMRT.2023.03.203.
  • Zhou, Y.; Lin, X.; Kang, N.; Huang, W.; Wang, J.; Wang, Z. Influence of Travel Speed on Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2219 Aluminum Alloy. J. Mater. Sci. Technol. 2020, 37, 143–153. DOI: 10.1016/J.JMST.2019.06.016.
  • Dong, M.; Zhao, Y.; Li, Q.; Fei, Y.; Zhao, T.; Wang, F.; Wu, A. Microstructure Evolution and Mechanical Property Anisotropy of Wire and Arc-Additive-Manufactured Wall Structure Using ER2319 Welding Wires. J. Mater. Eng. Perform. 2021, 30(1), 258–268. DOI: 10.1007/s11665-020-05336-1.
  • Wang, J.; Zhao, Z.; Bai, P.; Zhang, R.; Zhang, Z.; Wang, L.; Du, W.; Wang, F.; Huang, Z. Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Prepared Using Wire Arc Additive Manufacturing. J. Alloys Compd. 2023, 939, 168665. DOI: 10.1016/j.jallcom.2022.168665.
  • Cao, Q.; Qi, B.; Zeng, C.; Zhang, R.; He, B.; Qi, Z.; Wang, F.; Wang, H.; Cong, B. Achieving Equiaxed Microstructure and Isotropic Mechanical Properties of Additively Manufactured AZ31 Magnesium Alloy via Ultrasonic Frequency Pulsed Arc. J. Alloys Compd. 2022, 909, 164742. DOI: 10.1016/j.jallcom.2022.164742.
  • Wang, L.; Xue, J.; Wang, Q. Correlation Between Arc Mode, Microstructure, and Mechanical Properties During Wire Arc Additive Manufacturing of 316L Stainless Steel. Mater. Sci. Eng. A. 2019, 751, 183–190. DOI: 10.1016/j.msea.2019.02.078.
  • Chen, J.; Wei, H.; Zhang, X.; Peng, Y.; Kong, J.; Wang, K. Flow Behavior and Microstructure Evolution During Dynamic Deformation of 316 L Stainless Steel Fabricated by Wire and Arc Additive Manufacturing. Mater. Des. 2021, 198, 109325. DOI: 10.1016/j.matdes.2020.109325.
  • Ali, Y.; Henckell, P.; Hildebrand, J.; Reimann, J.; Bergmann, J. P.; Barnikol-Oettler, S. Wire Arc Additive Manufacturing of Hot Work Tool Steel with CMT Process. J. Mater. Process. Technol. 2019, 269, 109–116. DOI: 10.1016/j.jmatprotec.2019.01.034.
  • Wang, Z.; Beese, A. M. Effect of Chemistry on Martensitic Phase Transformation Kinetics and Resulting Properties of Additively Manufactured Stainless Steel. Acta Mater. 2017, 131, 410–422. DOI: 10.1016/j.actamat.2017.04.022.
  • Jin, W.; Zhang, C.; Jin, S.; Tian, Y.; Wellmann, D.; Liu, W. Wire Arc Additive Manufacturing of Stainless Steels: A Review. Applied Sciences. 2020, 10(5), 1563. DOI: 10.3390/app10051563.
  • Kannan, A. R.; Shanmugam, N. S.; Ramkumar, K. D.; Rajkumar, V. Studies on Super Duplex Stainless Steel Manufactured by Wire Arc Additive Manufacturing. Transactions Of The Indian Institute Of Metals. 2021, 74(7), 1673–1681. DOI: 10.1007/s12666-021-02257-y.
  • Meng, Y.; Li, J.; Zhang, S.; Gao, M.; Gong, M.; Chen, H. Wire Arc Additive Manufacturing of Ni-Al Intermetallic Compounds Through Synchronous Wire-Powder Feeding. J. Alloys Compd. 2023, 943, 169152. DOI: 10.1016/J.JALLCOM.2023.169152.
  • Ayan, Y.; Kahraman, N. Fabrication and Characterization of Functionally Graded Material (FGM) Structure Containing Two Dissimilar Steels (Er70S-6 and 308LSi) by Wire Arc Additive Manufacturing (WAAM). Mater. Today Commun. 2022, 33, 104457. DOI: 10.1016/J.MTCOMM.2022.104457.
  • Rodrigues, T. A.; Bairrão, N.; Farias, F. W. C.; Shamsolhodaei, A.; Shen, J.; Zhou, N.; Maawad, E.; Schell, N.; Santos, T. G.; Oliveira, J. P. Steel-Copper Functionally Graded Material Produced by Twin-Wire and Arc Additive Manufacturing (T-WAAM). Mater. Des. 2022, 213, 110270. DOI: 10.1016/J.MATDES.2021.110270.
  • Madhuri, N.; Jayakumar, V.; Sathishkumar, M. Recent Developments and Challenges Accompanying with Wire Arc Additive Manufacturing of Mg Alloys: A Review. Mater. Today Proc. 2021, 46, 8573–8577. DOI: 10.1016/J.MATPR.2021.03.548.
  • Dhinakaran, V.; Ajith, J.; Fathima Yasin Fahmidha, A.; Jagadeesha, T.; Sathish, T.; Stalin, B. Wire Arc Additive Manufacturing (WAAM) Process of Nickel Based Superalloys – a Review. Mater. Today Proc. 2020, 21, 920–925. DOI: 10.1016/J.MATPR.2019.08.159.
  • Wu, B.; Ding, D.; Pan, Z.; Cuiuri, D.; Li, H.; Han, J.; Fei, Z. Effects of Heat Accumulation on the Arc Characteristics and Metal Transfer Behavior in Wire Arc Additive Manufacturing of Ti6Al4V. J. Mater. Process. Technol. 2017, 250, 304–312. DOI: 10.1016/J.JMATPROTEC.2017.07.037.
  • Barath Kumar, M. D.; Manikandan, M. Assessment of Process, Parameters, Residual Stress Mitigation, Post Treatments and Finite Element Analysis Simulations of Wire Arc Additive Manufacturing Technique. Met. Mater. Int. 2022, 28(1), 54–111. DOI: 10.1007/s12540-021-01015-5.
  • Gullipalli, C.; Thawari, N.; Burad, P.; Gupta, T. V. K. Residual Stresses and Distortions in Additive Manufactured Inconel 718. Mater. Manuf. Processes. 2023, 38(12), 1549–1560. DOI: 10.1080/10426914.2023.2165663.
  • Ding, J.; Colegrove, P.; Mehnen, J.; Ganguly, S.; Almeida, P. M. S.; Wang, F.; Williams, S. Thermo-Mechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multi-Layer Parts. Comput. Mater. Sci. 2011, 50(12), 3315–3322. DOI: 10.1016/J.COMMATSCI.2011.06.023.
  • Srivastava, S.; Garg, R. K.; Sharma, V. S.; Sachdeva, A. Measurement and Mitigation of Residual Stress in Wire-Arc Additive Manufacturing: A Review of Macro-Scale Continuum Modelling Approach. Arch. Comput. Methods Eng. 2021, 28(5), 3491–3515. DOI: 10.1007/s11831-020-09511-4.
  • Li, R.; Xiong, J.; Lei, Y. Investigation on Thermal Stress Evolution Induced by Wire and Arc Additive Manufacturing for Circular Thin-Walled Parts. J. Manuf. Process. 2019, 40, 59–67. DOI: 10.1016/J.JMAPRO.2019.03.006.
  • Huang, H.; Ma, N.; Chen, J.; Feng, Z.; Murakawa, H. Toward Large-Scale Simulation of Residual Stress and Distortion in Wire and Arc Additive Manufacturing. Addit. Manuf. 2020, 34, 101248. DOI: 10.1016/J.ADDMA.2020.101248.
  • Yuan, Q.; Liu, C.; Wang, W.; Wang, M. Residual Stress Distribution in a Large Specimen Fabricated by Wire-Arc Additive Manufacturing. Sci. Technol. Weld. Joining. 2023, 28(2), 137–144. DOI: 10.1080/13621718.2022.2134963.
  • KA, G.; MJ, J. Residual Stress and Distortion in Gas Metal Arc-Based Additive Manufacturing. SSRN Electron. J. 2022. DOI: 10.2139/ssrn.4294602.
  • Mukherjee, T.; Zhang, W.; DebRoy, T. An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing. Comput. Mater. Sci. 2017, 126, 360–372. DOI: 10.1016/J.COMMATSCI.2016.10.003.
  • Mughal, M. P.; Fawad, H.; Mufti, R. Finite Element Prediction of Thermal Stresses and Deformations in Layered Manufacturing of Metallic Parts. Acta Mech. 2006, 183(1–2), 61–79. DOI: 10.1007/s00707-006-0329-4.
  • Costello, S. C. A.; Cunningham, C. R.; Xu, F.; Shokrani, A.; Dhokia, V.; Newman, S. T. The State-Of-The-Art of Wire Arc Directed Energy Deposition (WA-DED) as an Additive Manufacturing Process for Large Metallic Component Manufacture. Int J Comput Integr Manuf. 2023, 36(3), 469–510. DOI: 10.1080/0951192X.2022.2162597.
  • Zahidin, M. R.; Yusof, F.; Abdul Rashid, S. H.; Mansor, S.; Raja, S.; Jamaludin, M. F.; Manurung, Y. H.; Adenan, M. S.; Syahriah Hussein, N. I. R. C. Research Challenges, Quality Control and Monitoring Strategy for Wire Arc Additive Manufacturing. J. Mater. Res. Technol. 2023, 24, 2769–2794. DOI: 10.1016/J.JMRT.2023.03.200.
  • Bai, J.; Ding, H. L.; Gu, J. L.; Wang, X. S.; Qiu, H. Porosity Evolution in Additively Manufactured Aluminium Alloy During High Temperature Exposure. IOP Conf. Ser Mater. Sci. Eng. 2017, 167, 012045. DOI: 10.1088/1757-899X/167/1/012045.
  • Wang, Z.; Gao, Y.; Huang, J.; Wu, C.; Wang, G.; Liu, J. Precipitation Phenomena and Strengthening Mechanism of Al–Cu Alloys Deposited by in-Situ Rolled Wire-Arc Additive Manufacturing. Mater. Sci. Eng. A. 2022, 855, 143770. DOI: 10.1016/J.MSEA.2022.143770.
  • Cong, B.; Ding, J.; Williams, S. Effect of Arc Mode in Cold Metal Transfer Process on Porosity of Additively Manufactured Al-6.3%cu Alloy. Int. J. Adv. Manuf. Technol. 2015, 76(9–12), 1593–1606. DOI: 10.1007/s00170-014-6346-x.
  • Sames, W. J.; List, F. A.; Pannala, S.; Dehoff, R. R.; Babu, S. S. The Metallurgy and Processing Science of Metal Additive Manufacturing. Int. Mater. Rev. 2016, 61(5), 315–360. DOI: 10.1080/09506608.2015.1116649.
  • Srivastava, M.; Rathee, S.; Tiwari, A.; Dongre, M. Wire Arc Additive Manufacturing of Metals: A Review on Processes, Materials and Their Behaviour. Mater. Chem. Phys. 2023, 294, 126988. DOI: 10.1016/J.MATCHEMPHYS.2022.126988.
  • Zhong, Y.; Zheng, Z.; Li, J.; Wang, C. Fabrication of 316L Nuclear Nozzles on the Main Pipeline with Large Curvature by CMT Wire Arc Additive Manufacturing and Self-Developed Slicing Algorithm. Mater. Sci. Eng. A. 2021, 820, 141539. DOI: 10.1016/J.MSEA.2021.141539.
  • Davis, T. The Effect of Process Parameters on Laser-Deposited TI-6A1-4V.; University of Louisville, 2004. DOI: 10.18297/etd/319.
  • Zhang, C.; Chen, F.; Huang, Z.; Jia, M.; Chen, G.; Ye, Y.; Lin, Y.; Liu, W.; Chen, B.; Shen, Q.; et al., Additive Manufacturing of Functionally Graded Materials: A Review. Mater. Sci. Eng. A. 2019; 764, 138209. DOI:10.1016/j.msea.2019.138209
  • Xia, C.; Pan, Z.; Polden, J.; Li, H.; Xu, Y.; Chen, S.; Zhang, Y. A Review on Wire Arc Additive Manufacturing: Monitoring, Control and a Framework of Automated System. J. Manuf. Syst. 2020, 57, 31–45. DOI: 10.1016/j.jmsy.2020.08.008.
  • Ramalho, A.; Santos, T. G.; Bevans, B.; Smoqi, Z.; Rao, P.; Oliveira, J. P. Effect of Contaminations on the Acoustic Emissions During Wire and Arc Additive Manufacturing of 316L Stainless Steel. Addit. Manuf. 2022, 51, 102585. DOI: 10.1016/J.ADDMA.2021.102585.
  • Singh, S. R.; Khanna, P. Wire Arc Additive Manufacturing (WAAM): A New Process to Shape Engineering Materials. Mater. Today Proc. 2021, 44, 118–128. DOI: 10.1016/J.MATPR.2020.08.030.
  • Gu, J.; Wang, X.; Bai, J.; Ding, J.; Williams, S.; Zhai, Y.; Liu, K. Deformation Microstructures and Strengthening Mechanisms for the Wire+arc Additively Manufactured Al-Mg4.5Mn Alloy with Inter-Layer Rolling. Mater. Sci. Eng. A. 2018, 712, 292–301. DOI: 10.1016/J.MSEA.2017.11.113.
  • Colegrove, P. A.; Donoghue, J.; Martina, F.; Gu, J.; Prangnell, P.; Hönnige, J. Application of Bulk Deformation Methods for Microstructural and Material Property Improvement and Residual Stress and Distortion Control in Additively Manufactured Components. Scr. Mater. 2017, 135, 111–118. DOI: 10.1016/J.SCRIPTAMAT.2016.10.031.
  • Hu, Y.; Ao, N.; Wu, S.; Yu, Y.; Zhang, H.; Qian, W.; Guo, G.; Zhang, M.; Wang, G. Influence of in situ Micro-Rolling on the Improved Strength and Ductility of Hybrid Additively Manufactured Metals. Eng. Fract. Mech. 2021, 253, 107868. DOI: 10.1016/J.ENGFRACMECH.2021.107868.
  • Tanvir, A. N. M.; Ahsan, M. R. U.; Ji, C.; Hawkins, W.; Bates, B.; Kim, D. B. Heat Treatment Effects on Inconel 625 Components Fabricated by Wire + Arc Additive Manufacturing (WAAM)—Part 1: Microstructural Characterization. Int. J. Adv. Manuf. Technol. 2019, 103(9–12), 3785–3798. DOI: 10.1007/s00170-019-03828-6.
  • Baufeld, B.; Brandl, E.; Van Der Biest, O. Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti–6Al–4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition. J. Mater. Process. Technol. 2011, 211(6), 1146–1158. DOI: 10.1016/J.JMATPROTEC.2011.01.018.
  • Zhou, Y.; Lin, X.; Kang, N.; Huang, W.; Wang, Z. Mechanical Properties and Precipitation Behavior of the Heat-Treated Wire + Arc Additively Manufactured 2219 Aluminum Alloy. Mater. Charact. 2021, 171, 110735. DOI: 10.1016/J.MATCHAR.2020.110735.
  • Bhuvanesh Kumar, M.; Sathiya, P.; Senthil, S. M. A Critical Review of Wire Arc Additive Manufacturing of Nickel-Based Alloys: Principles, Process Parameters, Microstructure, Mechanical Properties, Heat Treatment Effects, and Defects. J. Braz. Soc. Mech. Sci. Eng. 2023, 45(3), 164. DOI: 10.1007/s40430-023-04077-1.
  • Li, S.; Ning, J.; Zhang, G. F.; Zhang, L. J.; Wu, J.; Zhang, L. X. Microstructural and Mechanical Properties of Wire-Arc Additively Manufactured Al–Zn–Mg Aluminum Alloy: The Comparison of As-Deposited and Heat-Treated Samples. Vacuum. 2021, 184, 109860. DOI: 10.1016/J.VACUUM.2020.109860.
  • Xu, T.; Liu, J.; Lu, T.; Jing, C.; Wang, J.; Ma, S.; Liu, C. Fabrication Strategy and Macroscopic Defect Control of Large-Size Component Based on Double-Wire Arc Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2023, 125(5–6), 2609–2625. DOI: 10.1007/s00170-023-10882-8.
  • Wu, W.; Xue, J.; Yao, P. A Comparative Study on Single- and Double-Arc Deposition Processes. Mater. Manuf. Processes. 2020, 35(3), 346–353. DOI: 10.1080/10426914.2020.1726947.
  • Zhou, W.; Shen, C.; Hua, X.; Zhang, Y.; Wang, L.; Xin, J.; Li, F. Twin-Wire Directed Energy Deposition-Arc of Ti–48Al–2Cr–2Nb Alloy: Feasibility, Microstructure, and Tensile Property Investigation. Mater. Sci. Eng. A. 2022, 850, 143566. DOI: 10.1016/J.MSEA.2022.143566.
  • Klein, T.; Birgmann, A.; Schnall, M. In Situ Alloying of Aluminium-Based Alloys by (Multi-)Wire-Arc Additive Manufacturing. MATEC Web of Conferences, 2020, 326, 01003. 10.1051/matecconf/202032601003.
  • Kozamernik, N.; Bračun, D.; Klobčar, D. WAAM System with Interpass Temperature Control and Forced Cooling for Near-Net-Shape Printing of Small Metal Components. Int. J. Adv. Manuf. Technol. 2020, 110(7–8), 1955–1968. DOI: 10.1007/s00170-020-05958-8.
  • da Silva, L. J.; Souza, D. M.; de Araújo, D. B.; Reis, R. P.; Scotti, A. Concept and Validation of an Active Cooling Technique to Mitigate Heat Accumulation in WAAM. Int. J. Adv. Manuf. Technol. 2020, 107(5–6), 2513–2523. DOI: 10.1007/s00170-020-05201-4.
  • Silva, L. Near-Immersion Active Cooling for Wire + Arc Additive Manufacturing: From Concept to Application. Universidade Federal de Uberlândia. 2019. DOI: 10.14393/ufu.te.2019.2422.
  • Jurić, I.; Garašić, I.; Bušić, M.; Kožuh, Z. Influence of Shielding Gas Composition on Structure and Mechanical Properties of Wire and Arc Additive Manufactured Inconel 625. JOM. 2019, 71(2), 703–708. DOI: 10.1007/s11837-018-3151-2.
  • Caruso, S.; Umbrello, D. Numerical and Experimental Validation of Gas Metal Arc Welding on AISI 441 Ferritic Stainless Steel Through Mechanical and Microstructural Analysis. Int. J. Adv. Manuf. Technol. 2022, 120(11–12), 7433–7444. DOI: 10.1007/s00170-022-09208-x.
  • Rubino, F.; Tucci, F.; Caruso, S.; Umbrello, D.; Carlone, P. An Integrated Numerical Approach to Simulate the Filler Deposition and the Shape Distortions in Gas Metal Arc Welding. CIRP J. Manuf. Sci. Technol. 2023, 45, 26–34. DOI: 10.1016/J.CIRPJ.2023.05.010.
  • Deng, D.; Murakawa, H. Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements. Comput. Mater. Sci. 2006, 37(3), 269–277. DOI: 10.1016/J.COMMATSCI.2005.07.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.