117
Views
9
CrossRef citations to date
0
Altmetric
Original

Evaluation of biologic activity of tryptase secreted from blast cells in acute myeloid leukemia

, , , , , , , , , , , & , M.D. show all
Pages 897-906 | Accepted 25 Nov 2005, Published online: 01 Jul 2009

References

  • Vellenga E, Griffin J D. The biology of acute myeloid leukemia. Semin Oncol 1987; 14: 365–371
  • Strout M P, Marcucci G, Caligiuri M A, Bloomfield C D. Core-binding factor (CBF) and MLL-associated primary acute myeloid leukemia: biology and clinical implications. Ann Hematol 1999; 78: 251–264
  • Kelly L M, Gilliland D G. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198
  • Pallis M, Turzanski J, Higashi Y, Russell N. P-glycoprotein in acute myeloid leukaemia: therapeutic implications of its association with both a multidrug-resistant and an apoptosis-resistant phenotype. Leuk Lymphoma 2002; 43: 1221–1228
  • Bendall L J, Daniel A, Kortlepel K, Gottlieb D J. Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells. Exp Hematol 1994; 22: 1252–1260
  • Albitar M. Angiogenesis in acute myeloid leukemia and myelodysplastic syndrome. Acta Haematol 2001; 106: 170–176
  • Bradstock K F, Gottlieb D J. Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease. Leuk Lymphoma 1995; 18: 1–16
  • Young D C, Griffin J D. Autocrine secretion of GM-CSF in acute myeloblastic leukemia. Blood 1986; 68: 1178–1181
  • Stocking C, Loliger C, Kawai M, Suciu S, Gough N, Ostertag W. Identification of genes involved in growth autonomy of hematopoietic cells by analysis of factor-independent mutants. Cell 1988; 53: 869–879
  • Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S, et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003; 63: 7241–7246
  • Wakabayashi M, Miwa H, Shikami M, Hiramatsu A, Ikai T, Tajima E, et al. Autocrine pathway of angiopoietins-Tie2 system in AML cells: association with phosphatidyl-inositol 3 kinase. Hematol J 2004; 5: 353–360
  • Estrov Z, Talpaz M. Role of interleukin-1 beta converting enzyme (ICE) in acute myelogenous leukemia cell proliferation and programmed cell death. Leuk Lymphoma 1997; 24: 379–391
  • Gattei V, Degan M, Rossi F M, de Iuliis A, Mazzocco F T, Serraino D, et al. CD30 ligand (CD30L)-expressing acute myeloid leukemias: a new model of paracrine interactions for the regulation of blast cells proliferation. Leuk Lymphoma 1999; 35: 21–35
  • Schuringa J J, Wierenga A T, Kruijer W, Vellenga E. Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6. Blood 2000; 95: 3765–3770
  • Bruserud O, Nesthus I, Buhring H J, Pawelec G. Cytokine modulation of interleukin 1 and tumour necrosis factor-alpha secretion from acute myelogenous leukaemia blast cells in vitro. Leuk Res 1995; 19: 15–22
  • Griffin J D, Rambaldi A, Vellenga E, Young D C, Ostapovicz D, Cannistra S A. Secretion of interleukin-1 by acute myeloblastic leukemia cells in vitro induces endothelial cells to secrete colony stimulating factors. Blood 1987; 70: 1218–1221
  • Bradbury D, Rogers S, Reilly I A, Kozlowski R, Russell N H. Role of autocrine and paracrine production of granulocyte-macrophage colony-stimulating factor and interleukin-1 beta in the autonomous growth of acute myeloblastic leukaemia cells-studies using purified CD34-positive cells. Leukemia 1992; 6: 562–566
  • Sperr W R, Jordan J H, Baghestanian M, Kiener H P, Samorapoompichit P, Semper H, et al. Expression of mast cell tryptase by myeloblasts in a group of patients with acute myeloid leukemia. Blood 2001; 98: 2200–2209
  • Sperr W R, Horny H P, Lechner K, Valent P. Clinical and biologic diversity of leukemias occurring in patients with mastocytosis. Leuk Lymphoma 2000; 37: 473–486
  • Valent P, Sperr W R, Samorapoompichit P, Geissler K, Lechner K, Horny H P, et al. Myelomastocytic overlap syndromes: biology, criteria, and relationship to mastocytosis. Leuk Res 2001; 25: 595–602
  • Sperr W R, Hauswirth A W, Valent P. Tryptase a novel biochemical marker of acute myeloid leukemia. Leuk Lymphoma 2002; 43: 2257–2261
  • Schwartz L B, Lewis R A, Austen K F. Tryptase from human pulmonary mast cells. Purification and characterization. J Biol Chem 1981; 256: 11939–11943
  • Schwartz L B, Foley J V, Austen K F, Soter N A, Shepard R, Murphy G F. Localization of tryptase to human cutaneous mast cells and keratinocytes by immunofluorescence and immunoperoxidase cytochemistry with monoclonal antitryptase antibody. J Allergy Clin Immunol 1985; 76: 182–188
  • Irani A A, Schechter N M, Craig S S, DeBlois G, Schwartz L B. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 1986; 83: 4464–4468
  • Jogie-Brahim S, Min H K, Fukuoka Y, Xia H Z, Schwartz L B. Expression of alpha-tryptase and beta-tryptase by human basophils. J Allergy Clin Immunol 2004; 113: 1086–1092
  • Schwartz L B, Sakai K, Bradford T R, Ren S, Zweiman B, Worobec A S, et al. The alpha form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J Clin Invest 1995; 96: 2702–2710
  • Sakai K, Ren S, Schwartz L B. A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest 1996; 97: 988–995
  • Kanthawatana S, Carias K, Arnaout R, Hu J, Irani A M, Schwartz L B. The potential clinical utility of serum alpha-protryptase levels. J Allergy Clin Immunol 1999; 103: 1092–1099
  • Schwartz L B, Min H K, Ren S, Xia H Z, Hu J, Zhao W, et al. Tryptase precursors are preferentially and spontaneously released, whereas mature tryptase is retained by HMC-1 cells, Mono-Mac-6 cells, and human skin-derived mast cells. J Immunol 2003; 170: 5667–5673
  • Ruoss S J, Hartmann T, Caughey G H. Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 1991; 88: 493–499
  • Hartmann T, Ruoss S J, Raymond W W, Seuwen K, Caughey G H. Human tryptase as a potent, cell-specific mitogen: role of signaling pathways in synergistic responses. Am J Physiol 1992; 262: 528–534
  • Abe M, Kurosawa M, Ishikawa O, Miyachi Y, Kido H. Mast cell tryptase stimulates both human dermal fibroblast proliferation and type I collagen production. Clin Exp Allergy 1998; 28: 1509–1517
  • Frungieri M B, Albrecht M, Raemsch R, Mayerhofer A. The action of the mast cell product tryptase on cyclooxygenase-2 (COX2) and subsequent fibroblast proliferation involves activation of the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Cell Signal 2005; 17: 525–533
  • Schwartz L B, Bradford T R, Rouse C, Irani A M, Rasp G, Van der Zwan J K, et al. Development of a new, more sensitive immunoassay for human tryptase: use in systemic anaphylaxis. J Clin Immunol 1994; 14: 190–204
  • Schwartz L B, Bradford T R, Lee D C, Chlebowski J F. Immunologic and physicochemical evidence for conformational changes occurring on conversion of human mast cell tryptase from active tetramer to inactive monomer. Production of monoclonal antibodies recognizing active tryptase. J Immunol 1990; 144: 2304–2311
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620–625
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 460–462
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br J Haematol 1991; 78: 325–329
  • Mayerhofer M, Florian S, Krauth M T, Aichberger K J, Bilban M, Marculescu R, et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res 2004; 64: 3148–3154
  • Krauth M T, Simonitsch I, Aichberger K J, Mayerhofer M, Sperr W R, Sillaber C, et al. Immunohistochemical detection of VEGF in the bone marrow of patients with chronic myeloid leukemia and correlation with the phase of disease. Am J Clin Pathol 2004; 121: 473–481
  • Florian S, Sonneck K, Hauswirth A W, Krauth M -T, Schernthaner G -H, Sperr W R, et al. Detection of molecular targets on the surface of CD34 + /CD38− stem cells in various myeloid malignancies. Leuk Lymphoma 2006; 47: 207–222
  • Kaddu S, Zenahlik P, Beham-Schmid C, Kerl H, Cerroni L. Specific cutaneous infiltrates in patients with myelogenous leukemia: a clinicopathologic study of 26 patients with assessment of diagnostic criteria. J Am Acad Dermatol 1999; 40: 966–978
  • Lee K H, Lee J H, Kim S, Lee J S, Kim S H, Kim W K. High frequency of extramedullary relapse of acute leukemia after allogeneic bone marrow transplantation. Bone Marrow Transplant 2000; 26: 147–152
  • Dery O, Corvera C U, Steinhoff M, Bunnett N W. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 1998; 274: 1429–1452
  • Coelho A M, Ossovskaya V, Bunnett N W. Proteinase-activated receptor-2: physiological and pathophysiological roles. Curr Med Chem Cardiovasc Hematol Agents 2003; 1: 61–72
  • O'Brien P J, Molino M, Kahn M, Brass L F. Protease activated receptors: theme and variations. Oncogene 2001; 20: 1570–1581
  • Levi-Schaffer F, Piliponsky A M. Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol 2003; 24: 158–161
  • Johansson U, Lawson C, Dabare M, Syndercombe-Court D, Newland A C, Howells G L, et al. Human peripheral blood monocytes express protease receptor-2 and respond to receptor activation by production of IL-6, IL-8, and IL-1β. J Leukoc Biol 2005; 78: 967–975

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.