219
Views
13
CrossRef citations to date
0
Altmetric
Original

Targets and strategies for T-cell based vaccines in patients with B-cell chronic lymphocytic leukemia

& , MD, PhD
Pages 2028-2036 | Received 15 Mar 2006, Accepted 17 Mar 2006, Published online: 01 Jul 2009

References

  • Keating M J, Chiorazzi N, Messmer B, Damle R N, Allen S L, Rai K R, et al. Biology and treatment of chronic lymphocytic leukemia. Hematology 2005; 153–175, ASH Educational Program
  • Hallek M. Chronic lymphocytic leukemia (CLL): first-line treatment. Hematology 2005; 285–291, ASH Educational Program
  • Dighiero G. Chronic lymphocytic leukemia treatment. Hematol Cell Ther 1997; 39: 31–40
  • Ribera J M, Vinolas N, Urbano-Ispizua A, Gallart T, Montserrat E, Rozman C. ‘Spontaneous’ complete remissions in chronic lymphocytic leukemia: report of three cases and review of the literature. Blood Cells 1987; 12: 471–483
  • Ziegler-Heitbrock H W, Schlag R, Flieger D, Thiel E. Favorable response of early stage B CLL patients to treatment with IFN-alpha 2. Blood 1989; 73: 1426–1430
  • Ritgen M, Stilgenbauer S, von Neuhoff N, Humpe A, Bruggemann M, Pott C, et al. Graft-versus-leukemia activity may overcome therapeutic resistance of chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene status: implications of minimal residual disease measurement with quantitative PCR. Blood 2004; 104: 2600–2602
  • Gitelson E, Hammond C, Mena J, Lorenzo M, Buckstein R, Berinstein N L, et al. Chronic lymphocytic leukemia-reactive T cells during disease progression and after autologous tumor cell vaccines. Clin Cancer Res 2003; 9: 1656–1665
  • Goddard R V, Prentice A G, Copplestone J A, Kaminski E R. Generation in vitro of B-cell chronic lymphocytic leukaemia-proliferative and specific HLA class-II-restricted cytotoxic T-cell responses using autologous dendritic cells pulsed with tumour cell lysate. Clin Exp Immunol 2001; 126: 16–28
  • Tsiodras S, Samonis G, Keating M J, Kontoyiannis D P. Infection and immunity in chronic lymphocytic leukemia. Mayo Clin Proc 2000; 75: 1039–1054
  • Scrivener S, Goddard R V, Kaminski E R, Prentice A G. Abnormal T-cell function in B-cell chronic lymphocytic leukaemia. Leuk Lymphoma 2003; 44: 383–389
  • Orsini E, Guarini A, Chiaretti S, Mauro F R, Foa R. The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer Res 2003; 63: 4497–4506
  • Ravandi F, O'Brien S. Immune defects in patients with chronic lymphocytic leukemia. Cancer Immunol Immunother 2006; 55: 197–209
  • Griffiths H, Lea J, Bunch C, Lee M, Chapel H. Predictors of infection in chronic lymphocytic leukaemia (CLL). Clin Exp Immunol 1992; 89: 374–377
  • Rozman C, Montserrat E, Vinolas N. Serum immunoglobulins in B-chronic lymphocytic leukemia. Natural history and prognostic significance. Cancer 1988; 61: 279–283
  • Kunicka J, Platsoucas C D. Leukaemic B cells from patients with chronic lymphocytic leukaemia suppress immunoglobulin production by lymphocytes from normal donors. Scand J Immunol 1988; 28: 1–10
  • Kurec A S, Davey F R. Impaired synthesis of immunoglobulin in patients with chronic lymphocytic leukemia. Am J Hematol 1987; 25: 131–142
  • Herrmann F, Sieber G, Chen Z, Enders B, Komischke B, Ruhl H. Further evidence for T cell abnormalities in chronic lymphocytic leukaemia of the B cell type. Clin Exp Immunol 1983; 53: 109–114
  • Steinman R M, Hawiger D, Nussenzweig M C. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21: 685–711
  • Gilliet M, Liu Y J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002; 195: 695–704
  • Vuillier F, Maloum K, Thomas E K, Jouanne C, Dighiero G, Scott-Algara D. Functional monocyte-derived dendritic cells can be generated in chronic lymphocytic leukaemia. Br J Haematol 2001; 115: 831–844
  • Goddard R V, Prentice A G, Copplestone J A, Kaminski E R. In vitro dendritic cell-induced T cell responses to B cell chronic lymphocytic leukaemia enhanced by IL-15 and dendritic cell-B-CLL electrofusion hybrids. Clin Exp Immunol 2003; 131: 82–89
  • Goddard R V, Prentice A G, Copplestone J A, Kaminski E R. Generation in vitro of B-cell chronic lymphocytic leukaemia-proliferative and specific HLA class-II-restricted cytotoxic T-cell responses using autologous dendritic cells pulsed with tumour cell lysate. Clin Exp Immunol 2001; 126: 16–28
  • Norris D A, Weston W L, Tubergen D G, Rose B, Odom L F. Monocyte chemotaxis in leukemia patients. J Lab Clin Med 1980; 95: 609–615
  • Fernandez R C, Lee S H, Fernandez L A, Pope B L, Rozee K R. Production of interferon by peripheral blood mononuclear cells from normal individuals and patients with chronic lymphocytic leukemia. J Interferon Res 1986; 6: 573–580
  • Flieger D, Emmerich B, Meyer N, Riethmuller G, Ziegler-Heitbrock H W. Deficient production of tumor necrosis factor by peripheral-blood monocytes in chronic lymphocytic leukemia. Int J Cancer 1990; 45: 280–286
  • Tsukada N, Burger J A, Zvaifler N J, Kipps T J. Distinctive features of ‘nurselike’ cells that differentiate in the context of chronic lymphocytic leukemia. Blood 2002; 99: 1030–1037
  • Foa R, Fierro M T, Lusso P, Raspadori D, Ferrando M L, Matera L, et al. Reduced natural killer T-cells in B-cell chronic lymphocytic leukaemia identified by three monoclonal antibodies: Leu-11, A10, AB8.28. Br J Haematol 1986; 62: 151–154
  • Kokhaei P, Choudhury A, Mahdian R, Lundin J, Moshfegh A, Osterborg A, Mellstedt H. Apoptotic tumor cells are superior to tumor cell lysate, and tumor cell RNA in induction of autologous T cell response in B-CLL. Leukemia 2004; 18: 1810–1815
  • Kokhaei P, Rezvany M R, Virving L, Choudhury A, Rabbani H, Osterborg A, Mellstedt H. Dendritic cells loaded with apoptotic tumour cells induce a stronger T-cell response than dendritic cell-tumour hybrids in B-CLL. Leukemia 2003; 17: 894–899
  • Palena C, Foon K A, Panicali D, Yafal A G, Chinsangaram J, Hodge J W, et al. Potential approach to immunotherapy of chronic lymphocytic leukemia (CLL): enhanced immunogenicity of CLL cells via infection with vectors encoding for multiple costimulatory molecules. Blood 2005; 106: 3515–3523
  • Decker T, Schneller F, Sparwasser T, Tretter T, Lipford G B, Wagner H, Peschel C. Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 2000; 95: 999–1006
  • Speiser D E, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, et al. Rapid and strong human CD8 + T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 2005; 115: 739–746
  • Dicker F, Kater A P, Fukuda T, Kipps T J. Fas-ligand (CD178) and TRAIL synergistically induce apoptosis of CD40-activated chronic lymphocytic leukemia B cells. Blood 2005; 105: 3193–3198
  • Wierda W G, Cantwell M J, Woods S J, Rassenti L Z, Prussak C E, Kipps T J. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924
  • Marks D I, Lush R, Cavenagh J, Milligan D W, Schey S, Parker A, et al. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 2002; 100: 3108–3114
  • Kollgaard T, Petersen S L, Hadrup S R, Masmas T N, Seremet T, Andersen M H, et al. Evidence for involvement of clonally expanded CD8 + T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation. Leukemia 2005; 19: 2273–2280
  • Greiner J, Li L, Ringhoffer M, Barth T FE, Giannopoulos K, Guillaume P, et al. Identification and characterization of epitopes of the receptor for hyaluronic acid mediated motility (RHAMM/CD168) recognized by CD8 positive T cells of HLA-A2 positive patients with acute myeloid leukemia. Blood 2005; 106: 938–945
  • Trojan A, Schultze J L, Witzens M, Vonderheide R H, Ladetto M, Donovan J W, Gribben J G. Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nat Med 2000; 6: 667–672
  • Harig S, Witzens M, Krackhardt A M, Trojan A, Barrett P, Broderick R, et al. Induction of cytotoxic T-cell responses against immunoglobulin V region-derived peptides modified at human leukocyte antigen-A2 binding residues. Blood 2001; 98: 2999–3005
  • Greiner J, Ringhoffer M, Taniguchi M, Schmitt A, Kirchner D, Krähn G, et al. RHAMM is a new immunogenic tumor-associated antigen overexpressed in acute and chronic myeloid leukemia. Exp J Hematol 2002; 30: 1029–1035
  • Greiner J, Ringhoffer M, Taniguchi M, Schmitt A, Döhner H, Schmitt M. Characterization of several leukemia-associated antigens inducing humoral immune responses in acute and chronic myeloid leukemia (AML/CML). Int J Cancer 2003; 106: 224–231
  • Craine M, Belch A R, Mant M J, Pilarski L. Overexpression of the receptor for hyaluronan-mediated motolity (RHAMM) characterizes the malignant clones in multiple myeloma: identification of three distinct RHAMM variants. Blood 1999; 93: 1684–1696
  • Assmann V, Marshal J F, Fieber C, Hofmann M, Hart I R. The human hyaluronan receptor RHAMM is expressed as an intracellular protein in breast cancer cells. J Cell Sci 1998; 111: 1685–1694
  • Giannopoulos K, Hus I, Li L, Bojarska-Junak A, Greiner J, Roliński J, et al. The receptor for hyaluronic acid mediated motility (RHAMM/CD168) is a potential target for immunotherapy of patients with B-cell chronic lymphocytic leukemia. Blood 2005; 106: 20a
  • Giannopoulos K, Li L, Bojarska-Junak A, Roliński J, Dmoszyńska A, et al. Expression of RHAMM/CD168 and other tumor associated antigens in patients with B-cell chronic lymphocytic leukemia. Int J Oncol 2006; 29: 95–103
  • Hus I, Rolinski J, Tabarkiewicz J, Wojas K, Bojarska-Junak A, Greiner J, et al. Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 1621–1627
  • Mayr C, Bund D, Schlee M, Bamberger M, Kofler D M, Hallek M, Wendtner C M. MDM2 is recognized as a tumor-associated antigen in chronic lymphocytic leukemia by CD8( + ) autologous T lymphocytes. Exp Hematol 2006; 34: 44–53
  • Levav-Cohen Y, Haupt S, Haupt Y. Mdm2 in growth signaling and cancer. Growth Factors 2005; 23(3)183–192
  • Zhang Z, Zhang R. p53-independent activities of MDM2 and their relevance to cancer therapy. Curr Cancer Drug Targets 2005; 5: 9–20
  • Onel K, Cordon-Cardo C. MDM2 and prognosis. Mol Cancer Res 2004; 2: 1–8
  • Klein C, Vassilev L T. Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 2004; 91(8)1415–1419
  • Müller M R, Tsakou G, Grunebach F, Schmidt S M, Brossart P. Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 2004; 103: 1763–1769
  • Ambrosini G, Adida C, Altieri D C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3: 917–921
  • Gordan J D, Vonderheide R H. Universal tumor antigens as targets for immunotherapy. Cytotherapy 2002; 4: 317–327
  • Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kuhl-Burmeister R, et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 2003; 170: 5391–5397
  • Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783
  • van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67: 2–17
  • Buhmann R, Nolte A, Westhaus D, Emmerich B, Hallek M. CD40-activated B-cell chronic lymphocytic leukemia cells for tumor immunotherapy: stimulation of allogeneic versus autologous T cells generates different types of effector cells. Blood 1999; 93: 1992–2002
  • Krackhardt A M, Harig S, Witzens M, Broderick R, Barrett P, Gribben J G. T-cell responses against chronic lymphocytic leukemia cells: implications for immunotherapy. Blood 2002; 100: 167–173
  • Schmidt S M, Schag K, Muller M R, Weck M M, Appel S, Kanz L, et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 2003; 102: 571–576
  • Reker S, Becker J C, Svane I M, Ralfkiaer E, Straten P T, Andersen M H. HLA-B35-restricted immune responses against survivin in cancer patients. Int J Cancer 2004; 108: 937–941
  • Caligaris-Cappio F. B-Chronic lymphatic leukemia: a malignancy of anti-self B cells. Blood 1996; 87: 2615–2620
  • Klein U, Tu Y, Stolovitzky G A, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638
  • Mayr C, Bund D, Schlee M, Moosmann A, Kofler D M, Hallek M, Wendtner C M. Fibromodulin as a novel tumor-associated antigen (TAA) in chronic lymphocytic leukemia (CLL) which allows expansion of specific CD8 + autologous T lymphocytes. Blood 2005; 105: 1566–1573
  • Hedbom E, Heinegard D. Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J Biol Chem 1993; 268: 27307–27312
  • Mikaelsson E, Danesh-Manesh A H, Luppert A, Jeddi-Tehrani M, Rezvany M R, Sharifian R A, et al. Fibromodulin, an extracellular matrix protein: characterization of its unique gene and protein expression in B-cell chronic lymphocytic leukemia and mantle cell lymphoma. Blood 2005; 105: 4828–4835
  • Mayr C, Kofler D M, Buning H, Bund D, Hallek M, Wendtner C M. Transduction of CLL cells by CD40 ligand enhances an antigen-specific immune recognition by autologous T cells. Blood 2005; 106: 3223–3226
  • Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, et al. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 2002; 62: 5818–5827
  • Schmidt S M, Schag K, Muller M R, Weinschenk T, Appel S, Schoor O, et al. Induction of adipophilin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res 2004; 64: 1164–1170
  • Siegel S, Wagner A, Kabelitz D, Marget M, Coggin J, Jr, Barsoum A, et al. Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies. Blood 2003; 102: 4416–4423
  • Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J, et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 2003; 63: 2127–2133
  • Rohrer J W, Barsoum A L, Dyess D L, Tucker J A, Coggin J H, Jr. Human breast carcinoma patients develop clonable oncofetal antigen-specific effector and regulatory T lymphocytes. J Immunol 1999; 162: 6880–6892
  • Castronovo V, Van Den Brule F A, Jackers P, Clausse N, Liu F T, Gillet C, Sobel M E. Decreased expression of galectin-3 is associated with progression of human breast cancer. J Pathol 1996; 179: 43–48
  • Krackhardt A M, Witzens M, Harig S, Hodi F S, Zauls A J, Chessia M, et al. Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood 2002; 100: 2123–2131
  • Stockinger B. T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv Immunol 1999; 71: 229–265
  • Greiner J, Giannopoulos K, Li L, Liebisch P, Wendl C, Chen J, et al. RHAMM/CD168-R3 peptide vaccination of HLA-A2 + patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and multiple myeloma (MM). ASH Annual meeting, Atlanta. Blood 2005; 106: 2781, (Abstract)
  • Banchereau J, Palucka A K. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296–306
  • Spaner D E, Hammond C, Mena J, Foden C, Deabreu A. A phase I/II trial of oxidized autologous tumor vaccines during the “watch and wait” phase of chronic lymphocytic leukemia. Cancer Immunol Immunother 2005; 54: 635–646
  • Porter D L, Levine B L, Bunin N, Stadtmauer E A, Luger S M, Goldstein S, et al. A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood 2006; 107: 1325–1331

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.