585
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Contemporary insights into the pathogenesis and treatment of chronic myeloproliferative neoplasms

, , , , , , , , & show all
Pages 1517-1526 | Received 31 Dec 2015, Accepted 26 Apr 2016, Published online: 31 May 2016

References

  • James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148.
  • Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.
  • Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–2390.
  • Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–2405.
  • Tefferi A, Pardanani A. Genetics: CALR mutations and a new diagnostic algorithm for MPN. Nat Rev Clin Oncol. 2014;11:125–126.
  • Tapper W, Jones AV, Kralovics R, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015;6:6691.
  • Rampal R, Ahn J, Abdel-Wahab O, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111:E5401–E5410.
  • Rea D, Nicolini FE, Tulliez M, et al. Dasatinib or Nilotinib discontinuation in chronic phase (CP)-Chronic Myeloid Leukemia (CML) patients (pts) with durably undetectable BCR-ABL transcripts: Interim analysis of the STOP 2G-TKI study with a minimum follow-up of 12 months – on behalf of the French CML Group Filmc. Blood. 2014;124: Abstract 811.
  • Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–1660.
  • Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One. 2006;1:e18.
  • Koppikar P, Abdel-Wahab O, Hedvat C, et al. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood. 2010;115:2919–2927.
  • Marty C, Harini N, Pecquet C, et al. Calr mutants retroviral mouse models lead to a myeloproliferative neoplasm mimicking an essential thrombocythemia progressing to a myelofibrosis. Blood. 2014;124: Abstract 157.
  • Shimizu T, Hao-Shen H, Kubovcakova L, et al. JAK2V617F and loss of Ezh2 in hematopoietic cells contribute synergistically to myeloproliferative neoplasm initiation potential, and accelerate progression of disease. Blood. 2014;124: Abstract 158.
  • Chen E, Schneider RK, Breyfogle LJ, et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood. 2015;125:327–335.
  • Yang Y, Akada H, Nath D, et al. Loss of EZH2 inhibits erythropoiesis and accelerates the development of myelofibrosis in Jak2V617F knock-in mice. Blood. 2014;124: Abstract 159.
  • Abdel-Wahab O, Pardanani A, Patel J, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011;25:1200–1202.
  • Daubner GM, Clery A, Jayne S, et al. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 2012;31:162–174.
  • Kim E, Ilagan JO, Liang Y, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27:617–630.
  • Chen E, Ahn J-S, Breyfogle LJ, et al. The Recql5 helicase is a novel downstream target of Jak2V617F and maintains genome stability in response to replication stress. Blood. 2014;124: Abstract 822.
  • Chen E, Ahn JS, Massie CE, et al. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proc Natl Acad Sci USA. 2014;111:15190–15195.
  • Koschmieder S, Gottgens B, Zhang P, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood. 2005;105:324–334.
  • Herrmann O, Wessling CA, Huber M, et al. Genetic depletion of Fc gamma receptor 2b affects CML stem cell biology. Blood. 2014;124:4528.
  • Schemionek M, Masouleh BK, Klaile Y, et al. Identification of the adapter molecule MTSS1 as a potential oncogene-specific tumor suppressor in acute myeloid leukemia. PLoS One. 2015;10:e0125783. DOI: 10.1371/journal.pone.0125783.
  • Giotopoulos G, van der Weyden L Osaki H, et al. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression. J Exp Med. 2015;212:1551–1569.
  • Kiladjian J-J, Heidel FH, Vannucchi A, et al. Efficacy, safety, and confirmation of the recommended phase 2 dose of ruxolitinib plus panobinostat in patients with intermediate or high-risk myelofibrosis. Blood. 2014;124: Abstract 711.
  • Cassinat B, Verger E, Kiladjian JJ. Interferon alfa therapy in CALR-mutated essential thrombocythemia. N Engl J Med. 2014;371:188–189.
  • Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.
  • Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–798.
  • Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372:426–435.
  • Mascarenhas JO, Talpaz M, Gupta V, et al. Primary analysis results from an open-label phase II study of INCB039110, a selective JAK1 inhibitor. Patients Myelofibrosis Blood. 2014;124: Abstract 714.
  • Weigert O, Lane AA, Bird L, et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med. 2012;209:259–273.
  • Verstovsek S, Mesa RA, Foltz LM, et al. Phase 2 trial of PRM-151, an anti-fibrotic agent, in patients with myelofibrosis: stage 1 results. Blood. 2014;124: Abstract 713.
  • Evrot E, Ebel N, Romanet V, et al. JAK1/2 and Pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease. Clin Cancer Res. 2013;19:6230–6241.
  • Durrant S, Koren-Michowitz M, Lavie D, et al. HARMONY: an open-label, multicenter, 2-arm, dose-finding, phase 1b study of the combination of ruxolitinib and buparlisib (BKM120) in patients with myelofibrosis (MF). Blood. 2014;124: Abstract 710.
  • Fiskus W, Verstovsek S, Manshouri T, et al. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Mol Cancer Ther. 2013;12:577–588.
  • Gupta V, Koschmieder S, Harrison C, et al. Phase 1b dose-escalation study of sonidegib (LDE225) in combination with ruxolitinib (INC424) in patients with myelofibrosis. Blood. 2014;124: Abstract 712.
  • Tefferi A, Lasho TL, Begna KH, et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med. 2015;373:908–919.
  • Patel AB, Vellore NA, Deininger MW. New strategies in myeloproliferative neoplasms: the evolving genetic and therapeutic landscape. Clin Cancer Res. 2016;22:1037.
  • Kleppe M, Kwak M, Koppikar P, et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015;5:316–331.
  • Koschmeider S, Mughal TI, Hasselbalch H, et al. Myeloproliferayive neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both. Leukemia. 2016;1:1–7.
  • Koppikar P, Bhagwat N, Kilpivaara O, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489:155–159.
  • Bhagwat N, Koppikar P, Keller M, et al. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Blood. 2014;123:2075–2083.
  • Meyer SC, Keller MD, Koppikar P, et al. Type II Inhibition of JAK2 with NVP-CHZ868 reverses type I JAK inhibitor persistence and demonstrates increased efficacy in MPN models. Blood. 2014;124: Abstract 160.
  • Shide K, Kameda T, Kamiunten A, et al. Therapies targeting the MAPK pathway improve bone marrow (BM) fibrosis induced by JAK2V617F. Blood. 2014;124: Abstract 162.
  • Mesa RA, Egyed M, Szoke A, et al. Results of the PERSIST-1 phase III study of pacritinib (PAC) versus best available therapy (BAT) in primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (PPV-MF), or post-essential thrombocythemia-myelofibrosis (PET-MF). J Clin Oncol. 2015;33: (Suppl.):Abstract LBA7006.
  • New drug approvals. Pharmacy Therapeut. 2016;41:144–148, 153–158, 161, 194.
  • Abdelrahman AR, Begna KH, Al-Kali A, et al. Revised assessment of response and long-term discontinuation rates among 111 patients with myelofibrosis treated with momelotinib or ruxolitinib. Leukaemia. 2015;29:498–500.
  • Gotlib JR, Kluin-Nelemans HC, George TI, et al. Midostaurin (PKC412) demonstrates a high rate of durable responses in patients with advanced systemic mastocytosis: results from the fully accrued global phase 2 CPKC412D2201 trial. Blood. 2014;124: Abstract 636.
  • Maric I. CD30-targeting drugs: cure for mastocytosis? Blood. 2015;126:2771–2773.
  • Bruger JA. Bruton's tyrosine kinase (BTK) inhibitors in clinical trials. Curr Hematol Malig Rep. 2014;9:44–99.
  • Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–2513.
  • Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120:5128–5133.
  • Vannucchi A, Guglielmelli P, Rotunno G, et al. Mutation-enhanced international prognostic scoring system (MIPSS) for primary myelofibrosis: an AGIMM & IWG-MRT project. Blood. 2014;124: Abstract 405.
  • Tefferi A, Guglielmelli P, Finke C, et al. Integration of mutations and karyotype towards a genetics-based prognostic scoring system (GPSS) for primary myelofibrosis. Blood. 2014;124: Abstract 406.
  • Finazzi G, Carobbio A, Guglielmelli P, et al. Calreticulin mutation does not modify the IPSET score for predicting the risk of thrombosis among 1150 patients with essential thrombocythemia. Blood. 2014;124:2611–2612.
  • Verger E, Cassinat B, Dosquet C, et al. Impact of the molecular profile of malignant clones on the response to interferon alpha (IFNa) therapy in JAK2V617F-negative essential thrombocythemia (ET). Blood. 2014;124: Abstract 407.
  • Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123:2220–2228.
  • Ortmann CA, Kent DG, Nangalia J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372:601–612.
  • Okimoto RA, Van Etten RA. Navigating the road toward optimal initial therapy for chronic myeloid leukemia. Curr Opin Hematol. 2011;18:89–97.
  • Cortes JE, Kantarjian HM, Goldberg SL, et al. High-dose imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: high rates of rapid cytogenetic and molecular responses. J Clin Oncol. 2009;27:4754–4759.
  • Cortes JE, Baccarani M, Guilhot F, et al. Phase III, randomized, open-label study of daily imatinib mesylate 400 mg versus 800 mg in patients with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase using molecular end points: tyrosine kinase inhibitor optimization and selectivity study. J Clin Oncol. 2010;28:424–430.
  • Hehlmann R, Muller MC, Lauseker M, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32:415–423.
  • Proetel U, Pletsch N, Lauseker M, et al. Older patients with chronic myeloid leukemia (>/=65 years) profit more from higher imatinib doses than younger patients: a subanalysis of the randomized CML-Study IV. Ann Hematol. 2014;93:1167–1176.
  • Kalmanti L, Sauselle S, Lauseker M, et al. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-Study IV. Leukemia. 2015;29:1123–1132.
  • Mughal TI, Schreiber A. Principal long-term adverse effects of imatinib in patients with chronic myeloid leukemia in chronic phase. Biologics. 2010;4:315–323.
  • Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–2551.
  • Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–2541.
  • Larson RA, Kim DW, Issaragrilsil S, et al. Efficacy and safety of nilotinib (NIL) vs imatinib (IM) in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP): long-term follow-up (f/u) of ENESTnd. Blood. 2014;124: Abstract 4541.
  • Cortes JE, Saglio G, Baccarani M, et al. Final study results of the phase 3 dasatinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) trial (DASISION, CA180-056). Blood. 2014;124: Abstract 152.
  • Mughal TI, Radich JR, Deininger M, et al. Chronic myeloid leukemia: reminiscences and dreams. Haematologica. 2016;101:541–558.
  • Cortes J, Mauro M, Steegman JL, et al. Cardiovascular and pulmonary adverse events in patients treated with BCR-ABL inhibitors: Data from the FDA Adverse Event Reporting System. Am J Hematol. 2015;90:E66–EE72.
  • Brümmendorf TH, Cortes JE, de Souza CA, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015;168:69–81.
  • Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–1796.
  • Lipton J, Chuah C, Guerci-Bresler A, et al. EPIC: a phase 3 trial of ponatinib compared with imatinib in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CP-CML). Blood. 2015;124: Abstract 519.
  • Valent P, Hadzijusufovic E, Schernthaner GH, et al. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125:901–906.
  • Wylie A, Schoepfer J, Berellini G, et al. ABL001, a potent allosteric inhibitor of BCR-ABL, prevents emergence of resistant disease when administered in combination with nilotinib in an in vivo murine model of chronic myeloid leukemia. Blood. 2014;124: Abstract 398.
  • Carter BZ, Mak PY, Mu H, et al. Cooperative targeting of Bcl-2 family proteins by ABT-199 (GDC-0199) and tyrosine kinase inhibitors to eradicate blast crisis CML and CML stem/progenitor cells. Blood. 2014;124: Abstract 512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.