2,203
Views
7
CrossRef citations to date
0
Altmetric
Original Article

The association between HLA and non-Hodgkin lymphoma subtypes, among a transplant-indicated population

ORCID Icon, , , , , , , ORCID Icon, , ORCID Icon & show all
Pages 2899-2908 | Received 13 Nov 2018, Accepted 04 May 2019, Published online: 19 Jun 2019

References

  • Johnson PCD, McAulay KA, Montgomery D, et al. Modeling HLA associations with EBV-positive and -negative Hodgkin lymphoma suggests distinct mechanisms in disease pathogenesis. Int J Cancer. 2015;137:1066–1075.
  • McAulay KA, Jarrett RF. Human leukocyte antigens and genetic susceptibility to lymphoma. Tissue Antigens. 2015;86:98–113.
  • Wang SS, Lu Y, Rothman N, et al. Variation in effects of non-Hodgkin lymphoma risk factors according to the human leukocyte antigen (HLA)-DRB1*01:01 allele and ancestral haplotype 8.1. PLoS ONE. 2011;6:e26949.
  • Riemersma SA, Jordanova ES, Haasnoot GW, et al. The relationship between HLA class II polymorphisms and somatic deletions in testicular B cell lymphomas of Dutch patients. Hum Immunol. 2006;67:303–310.
  • Abdou AM, Gao X, Cozen W, et al. Human leukocyte antigen (HLA) A1-B8-DR3 (8.1) haplotype, tumor necrosis factor (TNF) G-308A, and risk of non-Hodgkin lymphoma. Leukemia. 2010;24:1055–1058.
  • Lu Y, Abdou AM, Cerhan JR, et al. Human leukocyte antigen class I and II alleles and overall survival in diffuse large B-cell lymphoma and follicular lymphoma. Sci World J. 2011;11:2062–2070.
  • Akers NK, Curry JD, Conde L, et al. Association of HLA-DQB1 alleles with risk of follicular lymphoma. Leuk Lymphoma. 2011;52:53–58.
  • Skibola CF, Bracci PM, Nieters A, et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) polymorphisms and risk of non-Hodgkin lymphoma in the InterLymph Consortium. Am J Epidemiol. 2010;171:267–276.
  • Rothman N, Skibola CF, Wang SS, et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol. 2006;7:27–38.
  • Wang SS, Abdou AM, Morton LM, et al. Human leukocyte antigen class I and II alleles in non-Hodgkin lymphoma etiology. Blood. 2010;115:4820–4823.
  • Gragert L, Fingerson S, Albrecht M, et al. Fine-mapping of HLA associations with chronic lymphocytic leukemia in US populations. Blood. 2014;124:2657–2665.
  • El Ansary MM, Mohammed LA, Hassan TH, et al. Human leukocyte antigen-DRB1 polymorphism in childhood acute lymphoblastic leukemia. Mol Clin Oncol. 2015;3:425–429.
  • Speedy HE, Di Bernardo MC, Sava GP, et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2014;46:56–60.
  • Taylor GM, Hussain A, Verhage V, et al. Strong association of the HLA-DP6 supertype with childhood leukaemia is due to a single allele, DPB1*0601. Leukemia. 2009;23:863–869.
  • Orouji E, Tavakkol Afshari J, Badiee Z, et al. Association between HLA-DQB1 gene and patients with acute lymphoblastic leukemia (ALL). Int J Hematol. 2012;95:551–555.
  • Naugler C, Liwski R. Human leukocyte antigen class I alleles and the risk of chronic myelogenous leukemia: a meta-analysis. Leuk Lymphoma. 2010;51:1288–1292.
  • Cerhan JR, Berndt SI, Vijai J, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014;46:1233–1238.
  • Bassig BA, Cerhan JR, Au WY, et al. Genetic susceptibility to diffuse large B‐cell lymphoma in a pooled study of three Eastern Asian populations. Eur J Haematol. 2015;95:442–448.
  • Smedby KE, Foo JN, Skibola CF, et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet. 2011;7:e1001378.
  • Conde L, Halperin E, Akers NK, et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet. 2010;42:661–664.
  • Skibola CF, Berndt SI, Vijai J, et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet. 2014;95:462–471.
  • Berndt SI, Skibola CF, Joseph V, et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013;45:868–876.
  • Slager SL, Goldin LR, Strom SS, et al. Genetic susceptibility variants for chronic lymphocytic leukemia. Cancer Epidemiol Biomarkers Prev. 2010;19:1098–1102.
  • Slager SL, Camp NJ, Conde L, et al. Common variants within 6p21.31 locus are associated with chronic lymphocytic leukaemia and, potentially, other non-Hodgkin lymphoma subtypes. Br J Haematol. 2012;159:572–576.
  • Vijai J, Wang Z, Berndt SI, et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun. 2015;6:5751.
  • Cerhan JR, Fredericksen ZS, Wang AH, et al. Design and validity of a clinic-based case-control study on the molecular epidemiology of lymphoma. Int J Mol Epidemiol Genet. 2011;2:95–113.
  • Holly EA, Gautam M, Bracci PM. Comparison of interviewed and non-interviewed non-Hodgkin's lymphoma (NHL) patients in the San Francisco Bay Area. Ann Epidemiol. 2002;12:419–425.
  • Hu ZH, Connett JE, Yuan JM, et al. Role of survivor bias in pancreatic cancer case-control studies. Ann Epidemiol. 2016;26:50–56.
  • Morton LM, Turner JJ, Cerhan JR, et al. Proposed classification of lymphoid neoplasms for epidemiologic research from the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood. 2007;110:695–708.
  • Turner JJ, Morton LM, Linet MS, et al. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood. 2010;116:e90–e98.
  • González-Galarza Faviel F, Takeshita Louise YC, Santos Eduardo JM, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43:D784–D788.
  • Gourraud P-A, Lamiraux P, El-Kadhi N, et al. Inferred HLA haplotype information for donors from hematopoietic stem cells donor registries. Hum Immunol. 2005;66:563–570.
  • Madbouly A, Gragert L, Freeman J, et al. Validation of statistical imputation of allele-level multilocus phased genotypes from ambiguous HLA assignments. Tissue Antigens. 2014;84:285–292.
  • Paunić V, Gragert L, Madbouly A, et al. Measuring ambiguity in HLA typing methods. PLoS One. 2012;7:e43585.
  • Gragert L, Madbouly A, Freeman J, et al. Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum Immunol. 2013;74:1313–1320.
  • Klein SL, Jedlicka A, Pekosz A. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis. 2010;10:338–349.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol). 1995;57:289–300.
  • Skibola CF, Akers NK, Conde L, et al. Multi-locus HLA class I and II allele and haplotype associations with follicular lymphoma. Tissue Antigens. 2012;79:279–286.
  • Smigoc Schweiger D, Mendez A, Kunilo Jamnik S, et al. High-risk genotypes HLA-DR3-DQ2/DR3-DQ2 and DR3-DQ2/DR4-DQ8 in co-occurrence of type 1 diabetes and celiac disease. Autoimmunity. 2016;49:240–247.
  • Klitz W, Gragert L, Maiers M, et al. Genetic differentiation of Jewish populations. Tissue Antigens. 2010;76:442–458.
  • Manor S, Halagan M, Shriki N, et al. High-resolution HLA A ∼ B∼DRB1 haplotype frequencies from the Ezer Mizion Bone Marrow Donor Registry in Israel. Hum Immunol. 2016;77:1114–1119.
  • Guðjónsson JE, Valdimarsson H, Kárason A, et al. HLA-Cw6-positive and HLA-Cw6-negative patients with psoriasis vulgaris have distinct clinical features. J Investig Dermatol. 2002;118:362–365.
  • Noble JA. Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun. 2015;64:101–112.
  • Wang SS, Carrington M, Berndt SI, et al. HLA class I and II diversity contributes to the etiologic heterogeneity of non-Hodgkin lymphoma subtypes. Cancer Res. 2018;78:4086–4096.
  • Wang SS, Hartge P. Etiology and epidemiology of non-Hodgkin lymphoma. In: Armitage JO, Mauch PM, Harris NL, et al., editors. Non-Hodgkin lymphomas. 2nd ed. Philadelphia (PA): Lippincott, Williams and Wilkins; 2010. p. 64–82.
  • Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009;22:370–385.
  • Thio CL, Thomas DL, Karacki P, et al. Comprehensive analysis of class I and class II HLA antigens and chronic hepatitis B virus infection. J Virol. 2003;77:12083–12087.
  • De La Concha EG, Fernandez-Arquero M, Martinez A, et al. HLA class II homozygosity confers susceptibility to common variable immunodeficiency (CVID). Clin Exp Immunol. 1999;116:516–520.
  • Arrieta-Bolaños E, Madrigal JA, Shaw BE. Human leukocyte antigen profiles of Latin American populations: differential admixture and its potential impact on hematopoietic stem cell transplantation. Bone Marrow Res. 2012;2012:13.
  • Center for International Blood and Marrow Transplant, a contractor for the C.W. Bill Young Cell Transplantation Program operated through the U.S. Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau. U.S. Transplant Data by Center Report, NHL – Non-Hodgkin Lymphoma, Number of Transplants Reported in 2016. U.S. Transplant Data by Center Report. Last Updated: May 17, 2017; [cited 9 March 2018]. Available from: https://bloodcell.transplant.hrsa.gov/research/transplant_data/us_tx_data/data_by_center/center.aspx