483
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Expression levels of HLA-DR in acute myeloid leukemia: implications for antigenicity and clinical outcome

ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 1907-1919 | Received 24 Sep 2020, Accepted 28 Jan 2021, Published online: 02 Mar 2021

References

  • Newman RA, Delia D, Greaves MF, et al. Differential expression of HLA-DR and DR-linked determinants on human leukemias and lymphoid cells. Eur J Immunol. 1983;13(2):172–176.
  • Paietta E, Andersen J, Gallagher R, et al. The immunophenotype of acute promyelocytic leukemia (APL): an ECOG study. Leukemia. 1994;8:1108–1112.
  • Wetzler M, McElwain B, Stewart C, et al. HLA-DR antigen-negative acute myeloid leukemia. Leukemia. 2003;17(4):707–715.
  • Oelschlaegel U, Mohr B, Schaich M, et al. HLA-DRneg patients without acute promyelocytic leukemia show distinct immunophenotypic, genetic, molecular, and cytomorphologic characteristics compared to acute promyelocytic leukemia. Cytometry B Clin Cytom. 2009;76(5):321–327.
  • Bedoui S, Heath WR, Mueller SN. CD4(+) T-cell help amplifies innate signals for primary CD8(+) T-cell immunity . Immunol Rev. 2016;272(1):52–64.
  • Janssen EM, Lemmens EE, Wolfe T, et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 2003;421(6925):852–856.
  • Borst J, Ahrends T, Bąbała N, et al. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–647.
  • Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 2008;222:129–144.
  • Bevan MJ. Helping the CD8(+) T-cell response. Nat Rev Immunol. 2004;4(8):595–602.
  • Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol. 2006;24:519–540.
  • Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 2003;300(5617):337–339.
  • Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016;16(2):102–111.
  • Spitzer MH, Carmi Y, Reticker-Flynn NE, et al. Systemic immunity is required for effective cancer immunotherapy. Cell. 2017;168(3):487–502.e15.
  • Bos R, Sherman LA. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 2010;70(21):8368–8377.
  • Alspach E, Lussier DM, Miceli AP, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574(7780):696–701.
  • Moon H, Lee S, Huh J, et al. Characteristics of acute myeloid leukemia without HLA-DR expression. Korean J Lab Med. 2007;27:313–317.
  • Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447.
  • Döhner H, Estey EH, Amadori S, European LeukemiaNet, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–474.
  • Bene M, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9:1783–1786.
  • Bilich T, Nelde A, Bichmann L, et al. The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood. 2019;133(6):550–565.
  • Nelde A, Kowalewski DJ, Backert L, et al. HLA ligandome analysis of primary chronic lymphocytic leukemia (CLL) cells under lenalidomide treatment confirms the suitability of lenalidomide for combination with T-cell-based immunotherapy. Oncoimmunology. 2018;7(4):e1316438.
  • Berlin C, Kowalewski D, Schuster H, et al. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia. 2015;29(3):647–659.
  • Falk K, Rötzschke O, Stevanović S, et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351(6324):290–296.
  • Nelde A, Kowalewski DJ, Stevanović S. Purification and identification of naturally presented MHC Class I and II ligands. Antigen Processing. New York (NY): Humana; 2019. p. 123–136.
  • Consortium U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515.
  • Jensen KK, Andreatta M, Marcatili P, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394–406.
  • Thiede C, Koch S, Creutzig E, for the Deutsche Studieninitiative Leukämie (DSIL), et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(1):4011–4020.
  • van den Ancker W, van Luijn MM, Chamuleau ME, et al. High class II-associated invariant chain peptide expression on residual leukemic cells is associated with increased relapse risk in acute myeloid leukemia. Leuk Res. 2014;38(6):691–693.
  • van Luijn MM, van den Ancker W, van Ham SM, et al. Class II-associated invariant chain peptide as predictive immune marker in minimal residual disease in acute myeloid leukemia. Oncoimmunology. 2014;3(12):e941737.
  • Dunne MR, Michielsen AJ, O’Sullivan KE, et al. HLA-DR expression in tumor epithelium is an independent prognostic indicator in esophageal adenocarcinoma patients. Cancer Immunol Immunother. 2017;66(7):841–850.
  • Higashi M, Tokuhira M, Fujino S, et al. Loss of HLA-DR expression is related to tumor microenvironment and predicts adverse outcome in diffuse large B-cell lymphoma. Leukemia & Lymphoma. 2016;57(1):161–166.
  • Christopher MJ, Petti AA, Rettig MP, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med. 2018;379(24):2330–2341.
  • Toffalori C, Zito L, Gambacorta V, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med. 2019;25(4):603–611.
  • Solary E, Casasnovas R, Campos L, et al. Surface markers in adult acute myeloblastic leukemia: correlation of CD19+, CD34+ and CD14+/DR–phenotypes with shorter survival. Groupe d'Etude Immunologique des Leucemies (GEIL). Leukemia. 1992;6:393–399.
  • Moretti S, Pinzi C, Berti E, et al. In situ expression of transforming growth factor beta is associated with melanoma progression and correlates with Ki67, HLA-DR and beta 3 integrin expression. Melanoma Res. 1997;7:313–321.
  • Pilkington G, Juneja S, Tan L, et al. Correlation of immunological surface antigens with survival in diffuse large cell lymphoma. Hematol Oncol. 1993;11(4):195–205.
  • Riemersma SA, Jordanova ES, Schop RF, et al. Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immune-privileged sites. Blood. 2000;96(10):3569–3577.
  • Slymen DJ, Miller TP, Lippman SM, et al. Immunobiologic factors predictive of clinical outcome in diffuse large-cell lymphoma. J Clin Oncol. 1990;8(6):986–993.
  • Sconocchia G, Eppenberger-Castori S, Zlobec I, et al. HLA class II antigen expression in colorectal carcinoma tumors as a favorable prognostic marker. Neoplasia. 2014;16(1):31–42.
  • Silva G, Silva TGA, Duarte RA, et al. Expression of the classical and nonclassical HLA molecules in breast cancer. Int J Breast Cancer. 2013;2013:250435.
  • Forero A, Li Y, Chen D, et al. Expression of the MHC class II pathway in triple-negative breast cancer tumor cells is associated with a good prognosis and infiltrating lymphocytes. Cancer Immunol Res. 2016;4(5):390–399.
  • Johnson DB, Estrada MV, Salgado R, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582
  • Zanetti M. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics. J Immunol. 2015;194(5):2049–2056.
  • Callahan MJ, Nagymanyoki Z, Bonome T, et al. Increased HLA-DMB expression in the tumor epithelium is associated with increased CTL infiltration and improved prognosis in advanced-stage serous ovarian cancer. Clin Cancer Res. 2008;14(23):7667–7673.
  • Park IA, Hwang S-H, Song IH, et al. Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS One. 2017;12(8):e0182786.
  • Roemer MG, Redd RA, Cader FZ, et al. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol. 2018;36(10):942–950.
  • Ostrand-Rosenberg S, Thakur A, Clements V. Rejection of mouse sarcoma cells after transfection of MHC class II genes. J Immunol. 1990;144(10):4068–4071.
  • Panelli MC, Wang E, Shen S, et al. Interferon gamma (IFNgamma) gene transfer of an EMT6 tumor that is poorly responsive to IFNgamma stimulation: increase in tumor immunogenicity is accompanied by induction of a mouse class II transactivator and class II MHC. Cancer Immunol Immunother. 1996;42(2):99–107.
  • Corthay A, Lundin KU, Lorvik KB, et al. Secretion of tumor-specific antigen by myeloma cells is required for cancer immunosurveillance by CD4+ T cells. Cancer Res. 2009;69(14):5901–5907.
  • Haabeth OAW, Fauskanger M, Manzke M, et al. CD4+ T-cell-mediated rejection of MHC Class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs. Cancer Res. 2018;78(16):4573–4585.
  • Haabeth OAW, Tveita AA, Fauskanger M, et al. How do CD4(+) T cells detect and eliminate tumor cells that either lack or express MHC Class II molecules? Front Immunol. 2014;5:174.
  • Quezada SA, Simpson TR, Peggs KS, et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med. 2010;207(3):637–650.
  • Xie Y, Akpinarli A, Maris C, et al. Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med. 2010;207(3):651–667.
  • Scott AA, Head DR, Kopecky KJ, et al. HLA-DR-, CD33+, CD56+, CD16- myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as French-American-British acute myeloid leukemia-M3. Blood. 1994;84(1):244–255.
  • Alonso M, Navarrete C, Solana R, et al. Differential expression of HLA-DR and HLA-DQ antigens on normal cells of the myelomonocytic lineage. Tissue Antigens. 1985;26(5):310–317.
  • Amatruda TT 3rd, Bohman R, Ranyard J, et al. Pattern of expression of HLA-DR and HLA-DQ antigens and mRNA in myeloid differentiation. Blood. 1987;69(4):1225–1236.
  • Steimle V, Siegrist C-A, Mottet A, et al. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science. 1994;265(5168):106–109.
  • Yunis JJ, Band H, Bonneville F, et al. Differential expression of MHC class II antigens in myelomonocytic leukemia cell lines. Blood. 1989;73(4):931–937
  • Choi NM, Majumder P, Boss JM. Regulation of major histocompatibility complex class II genes. Curr Opin Immunol. 2011;23(1):81–87.
  • Majumder P, Boss JM. DNA methylation dysregulates and silences the HLA-DQ locus by altering chromatin architecture. Genes Immun. 2011;12(4):291–299.
  • de Boer B, Prick J, Pruis MG, et al. Prospective isolation and characterization of genetically and functionally distinct AML subclones. Cancer Cell. 2018;34(4):674–689.e8.
  • Syampurnawati M, Tatsumi E, Ardianto B, et al. DR negativity is a distinctive feature of M1/M2 AML cases with NPM1 mutation. Leuk Res. 2008;32:1141–1143.
  • Greiner J, Ono Y, Hofmann S, et al. Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia . Blood. 2012;120(6):1282–1289.
  • van der Lee DI, Reijmers RM, Honders MW, et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J Clin Invest. 2019;129(2):774–785.
  • Nelde A, Kowalewski DJ, Salih HR, et al. Identification of naturally presented HLA ligands of CD34 + CD38- acute myeloid leukemia (AML) progenitor cells for T cell-based immunotherapy – Neoepitopes and self-peptides as novel targets for anti-cancer therapy. Abstract CIMT 2019 Annual Meeting; 2019.
  • Finn OJ, Rammensee H-G. Is it possible to develop cancer vaccines to neoantigens, what are the major challenges, and how can these be overcome? neoantigens: nothing new in spite of the name. Cold Spring Harb Perspect Biol. 2018;10(11):a028829.
  • Roerden M, Nelde A, Walz JS. Neoantigens in hematological malignancies – ultimate targets for immunotherapy? Front Immunol. 2019;10:3004.
  • Yadav M, Jhunjhunwala S, Phung QT, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572–576.
  • Backert L, Kowalewski DJ, Walz S, et al. A meta-analysis of HLA peptidome composition in different hematological entities: entity-specific dividing lines and “pan-leukemia” antigens. Oncotarget. 2017;8(27):43915–43924.
  • Petersdorf EW, Gooley T, Malkki M, et al. The biological significance of HLA-DP gene variation in haematopoietic cell transplantation. Br J Haematol. 2001;112(4):988–994.
  • Piersma SJ, Welters MJ, Van Der Hulst JM, et al. Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and -DP as a restriction element. Int J Cancer. 2008;122(3):486–494.
  • Iiizumi S, Ohtake J, Murakami N, et al. Identification of novel HLA class II-restricted neoantigens derived from driver mutations. Cancers. 2019;11(2):266.
  • Schultz ES, Lethé B, Cambiaso CL, et al. A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic T lymphocytes. Cancer Res. 2000;60(22):6272–6275.
  • Niehrs A, Garcia-Beltran WF, Norman PJ, et al. A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat Immunol. 2019;20(9):1129–1137.
  • Ayyoub M, Hesdorffer CS, Metthez G, et al. Identification of an SSX-2 epitope presented by dendritic cells to circulating autologous CD4+ T cells. J Immunol. 2004;172(11):7206–7211.
  • Shaw BE, Gooley TA, Malkki M, et al. The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood. 2007;110(13):4560–4566.
  • Fleischhauer K, Shaw BE, Gooley T, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. The Lancet Oncology. 2012;13(4):366–374.
  • Cesson V, Rivals J-P, Escher A, et al. MAGE-A3 and MAGE-A4 specific CD4(+) T cells in head and neck cancer patients: detection of naturally acquired responses and identification of new epitopes. Cancer Immunol Immunother. 2011;60(1):23–35.
  • Wang X-F, Cohen WM, Castelli FA, et al. Selective identification of HLA-DP4 binding T cell epitopes encoded by the MAGE-A gene family. Cancer Immunol Immunother. 2007;56(6):807–818.
  • Chen B, Khodadoust MS, Olsson N, et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat Biotechnol. 2019;37(11):1332–1343.
  • Chicz RM, Urban RG, Gorga JC, et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med. 1993;178(1):27–47.
  • Hammer J, Valsasnini P, Tolba K, et al. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell. 1993;74(1):197–203.
  • Alvarez B, Reynisson B, Barra C, et al. NNAlign_MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved T-cell epitope predictions. Mol Cell Proteomics. 2019;18(12):2459–2477.
  • Racle J, Michaux J, Rockinger GA, et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol. 2019;37(11):1283–1284.
  • Raddrizzani L, Sturniolo T, Guenot J, et al. Different modes of peptide interaction enable HLA-DQ and HLA-DR molecules to bind diverse peptide repertoires. J Immunol. 1997;159(2):703–711.
  • van Lith M, McEwen-Smith RM, Benham AM. HLA-DP, HLA-DQ, and HLA-DR have different requirements for invariant chain and HLA-DM. J Biol Chem. 2010;285(52):40800–40808.
  • Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol. 2014;26:115–122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.