196
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Classic Hodgkin lymphoma in Guatemalan children of age less than six years: analysis of immune regulatory pathways and the tumor microenvironment

ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Pages 1609-1618 | Received 26 Nov 2020, Accepted 26 Jan 2021, Published online: 24 Feb 2021

References

  • Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER Research Data, 9 Registries, Nov 2019 Sub (1975–2016) - National Cancer Institute, DCCPS, Surveillance Research Program, based on the November 2018 submission.
  • Fend F. Classical Hodgkin’s lymphoma and related lesions. Chapter 28. In: Arber DA, Campo E, Harris NL, Sarkin Jaffe E, Quintanilla-Martinez L, editors. Hematopathology. 2nd ed. Philadelphia (PA): Elsevier; 2017.
  • Valsecchi MG, Tognoni G, Bonilla M, et al. Clinical epidemiology of childhood cancer in Central America and Caribbean countries. Ann Oncol. 2004;15(4):680–685.
  • Castellanos EM, Barrantes JC, Báez LF, et al. A chemotherapy only therapeutic approach to pediatric Hodgkin lymphoma: AHOPCA LH 1999: treatment of Hodgkin lymphoma in AHOPCA. Pediatr Blood Cancer. 2014;61(6):997–1002.
  • Cleary SF, Link MP, Donaldson SS. Hodgkin’s disease in the very young. Int J Radiat Oncol*Biol*Phys. 1994;28(1):77–83.
  • Farruggia P, Puccio G, Locatelli F, et al. Classical pediatric Hodgkin lymphoma in very young patients: the Italian experience. Leuk Lymphoma. 2019;60(3):696–702.
  • Hsu SC, Metzger ML, Hudson MM, et al. Comparison of treatment outcomes of childhood Hodgkin lymphoma in two US centers and a center in Recife, Brazil. Pediatr Blood Cancer. 2007;49(2):139–144.
  • Faria SL, Vassallo J, Cosset JM, et al. Childhood Hodgkin’s disease in Campinas. Med Pediatr Oncol. 1996;26(2):90–94.
  • Yamamoto R, Nishikori M, Kitawaki T, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–3224.
  • Alvaro T. Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res. 2005;11(4):1467–1473.
  • Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–885.
  • Vardhana S, Younes A. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints. Haematologica. 2016;101(7):794–802.
  • Anderson MW, Zhao S, Freud AG, et al. CD137 is expressed in follicular dendritic cell tumors and in classical Hodgkin and T-cell lymphomas: diagnostic and therapeutic implications. Am J Pathol. 2012;181(3):795–803.
  • Pang WL, Ho WT, Schwarz H. Ectopic CD137 expression facilitates the escape of Hodgkin and Reed-Sternberg cells from immunosurveillance. OncoImmunology. 2013;2(4):e23441.
  • Natkunam Y, Hsi ED, Aoun P, et al. Expression of the human germinal center–associated lymphoma (HGAL) protein identifies a subset of classic Hodgkin lymphoma of germinal center derivation and improved survival. Blood. 2007;109(1):298–305.
  • Azambuja D, Lossos IS, Biasoli I, et al. Human germinal center-associated lymphoma protein expression is associated with improved failure-free survival in Brazilian patients with classical Hodgkin lymphoma. Leuk Lymphoma. 2009;50(11):1830–1836.
  • Aldinucci D, Gloghini A, Pinto A, et al. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol. 2010;221(3):248–263.
  • Lee J-H, Kim Y, Choi J-W, et al. Prevalence and prognostic significance of Epstein–Barr virus infection in classical Hodgkin’s lymphoma: a meta-analysis. Arch Med Res. 2014;45(5):417–431.
  • Sierra R, Parkin DM, Leiva GM. Cancer in Costa Rica. Cancer Res. 1989;49(3):717–724.
  • Jaime-Pérez JC, Treviño-Reyna G, Aguilar-Calderón P, et al. Contributions of a regional approach to document hematologic disease in Mexico: a 10-year experience in an open population. Hematology. 2018;23(10):803–809.
  • Ambinder RF, Browning PJ, Lorenzana I, et al. Epstein-Barr virus and childhood Hodgkin’s disease in Honduras and the United States. Blood. 1993;81(2):462–467.
  • Ambinder RF. Epstein-Barr virus and Hodgkin lymphoma. Hematology. 2007;2007(1):204–209.
  • Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues, revised. 4th ed. Lyon: IARC; 2017.
  • Quintana Y, Patel AN, Arreola M, et al. POND4Kids: a global web-based database for pediatric hematology and oncology outcome evaluation and collaboration. Stud Health Technol Inform. 2013;183:251–256.
  • Friedrich P, Ortiz R, Strait K, et al. Pediatric sarcoma in Central America: outcomes, challenges, and plans for improvement. Cancer. 2013;119(4):871–879.
  • Foran AE, Nadel HR, Lee AF, et al. Nivolumab in the treatment of refractory pediatric Hodgkin lymphoma. J Pediatr Hematol/Oncol. 2017;39(5):e263–e266.
  • Rajendran S, Li Y, Ngoh E, et al. Development of a bispecific antibody targeting CD30 and CD137 on Hodgkin and Reed-Sternberg Cells. Front Oncol. 2019;9:945.
  • Sala A, Rossi E, Antillon F, et al. Nutritional status at diagnosis is related to clinical outcomes in children and adolescents with cancer: a perspective from Central America. Eur J Cancer. 2012;48(2):243–252.
  • Ladas EJ, Arora B, Howard SC, et al. A Framework for adapted nutritional therapy for children with cancer in low- and middle-income countries: a report from the SIOP PODC nutrition working group: a framework for nutritional care in LMIC. Pediatr Blood Cancer. 2016;63(8):1339–1348.
  • Harris N. The many faces of Hodgkin’s disease around the world: what have we learned from its pathology? Ann Oncol. 1998;9:S45–S56.
  • Schwartz CL, Chen L, McCarten K, et al. Childhood Hodgkin international prognostic score (CHIPS) predicts event-free survival in Hodgkin lymphoma: a report from the children’s oncology group. Pediatr Blood Cancer. 2017;64(4):e26278.
  • Claviez A, Tiemann M, Lüders H, et al. Impact of latent Epstein-Barr Virus infection on outcome in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol. 2005;23(18):4048–4056.
  • Jarrett RF, Stark GL, White J, et al. Impact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: a population-based study. Blood. 2005;106(7):2444–2451.
  • Chabay PA, Barros MHM, Hassan R, et al. Pediatric Hodgkin lymphoma in 2 South American Series: a distinctive epidemiologic pattern and lack of association of Epstein-Barr virus with clinical outcome. J Pediatr Hematol/Oncol. 2008;30(4):285–291.
  • Robbiani DF, Deroubaix S, Feldhahn N, et al. Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. Cell. 2015;162(4):727–737.
  • Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110(10):3715–3721.
  • Barros MHM, Vera-Lozada G, Soares FA, et al. Tumor microenvironment composition in pediatric classical Hodgkin lymphoma is modulated by age and Epstein-Barr virus infection. Int J Cancer. 2012;131(5):1142–1152.
  • Guo B, Cen H, Tan X, et al. Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in adult classical Hodgkin lymphoma. BMC Med. 2016;14(1):159.
  • Kayal S, Mathur S, Karak AK, et al. CD68 tumor-associated macrophage marker is not prognostic of clinical outcome in classical Hodgkin lymphoma. Leuk Lymphoma. 2014;55(5):1031–1037.
  • Azambuja D, Natkunam Y, Biasoli I, et al. Lack of association of tumor-associated macrophages with clinical outcome in patients with classical Hodgkin’s lymphoma. Ann Oncol. 2012;23(3):736–742.
  • Barros MHM, Hassan R, Niedobitek G. Tumor-associated macrophages in pediatric classical Hodgkin lymphoma: association with Epstein-Barr Virus, lymphocyte subsets, and prognostic impact. Clin Cancer Res. 2012;18(14):3762–3771.
  • Jimenez O, Barros MH, De Matteo E, et al. M1-like macrophage polarization prevails in young children with classic Hodgkin Lymphoma from Argentina. Sci Rep. 2019;9(1):12687.
  • Dilly‐Feldis M, Aladjidi N, Refait JK, et al. Expression of PD‐1/PD‐L1 in children’s classical Hodgkin lymphomas. Pediatr Blood Cancer. 2019;66(5):e27571.
  • Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–3277.
  • Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 Activity and EBV Infection Induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611–1618.
  • Uccini S, Al‐Jadiry MF, Pepe G, et al. PD-L1 expression in pediatric Epstein-Barr virus positive classic Hodgkin lymphoma is not associated with 9p24.1 amplification. Pediatr Blood Cancer. 2019;66(7):e27757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.