210
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Penicillium genus as a source for anti-leukemia compounds: an overview from 1984 to 2020

, , , ORCID Icon & ORCID Icon
Pages 2079-2093 | Received 13 Aug 2020, Accepted 26 Feb 2021, Published online: 18 Mar 2021

References

  • Redaelli A, Stephens JM, Laskin BL, et al. The burden and outcomes associated with four leukemias: AML, ALL, CLL and CML. Expert Rev Anticancer Ther. 2003;3:311–329.
  • Guest EM, Stam RW. Updates in the biology and therapy for infant acute lymphoblastic leukemia. Curr Opin Pediatr. 2017;29:20–26.
  • Koh K, Tomizawa D, Moriya Saito A, et al. Early use of allogeneic hematopoietic stem cell transplantation for infants with MLL gene-rearrangement-positive acute lymphoblastic leukemia. Leukemia. 2015;29:290–296.
  • Dreyer ZE, Hilden JM, Jones TL, et al. Intensified chemotherapy without Sct in infant all: results from COG P9407 (Cohort 3) ZoAnn. Pediatr Blood Cancer. 2015;62:419–426.
  • P R, S M, D Lorenzo P. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Pediatr Cancer. 2007;370:240–250.
  • Danilov AV. Targeted therapy in chronic lymphocytic leukemia: past, present, and future. Clin Ther. 2013;35:1258–1270.
  • Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev. 2017;31:63–76.
  • Zenonos K, Kyprianou K. RAS signaling pathways, mutations and their role in colorectal cancer. World J Gastrointest Oncol. 2013;5:97–101.
  • Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–1274.
  • Sami SA, Darwish NHE, Barile ANM. Current and future molecular targets for acute myeloid leukemia therapy. Curr Treat Options Oncol. 2020;21:3.
  • Carrà G, Cartellà A, Maffeo B, et al. Strategies for targeting chronic myeloid leukaemia stem cells. Blood Lymphat Cancer. 2019;9:45–52.
  • Inoue A, Kobayashi CI, Shinohara H, et al. Chronic myeloid leukemia stem cells and molecular target therapies for overcoming resistance and disease persistence. Int J Hematol. 2018;108:365–370.
  • Taverna S, Corrado C. Natural compounds: molecular weapons against leukemia’s. J Leuk. 2017;05.
  • Senthilkumar R, Chen BA, Cai XH, et al. Anticancer and multidrug-resistance reversing potential of traditional medicinal plants and their bioactive compounds in leukemia cell lines. Chin J Nat Med. 2014;12:881–894.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.
  • Tan SY, Tatsumura Y. Alexander Fleming (1881-1955): discoverer of penicillin. Singapore Med J. 2015;56:366–367.
  • Grijseels S, Nielsen JC, Nielsen J, et al. Physiological characterization of secondary metabolite producing penicillium cell factories. Fungal Biol Biotechnol. 2017;4:8–12.
  • Patridge E, Gareiss P, Kinch MS, et al. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 2016;21:204–207.
  • Koul M, Singh S. Penicillium spp.: prolific producer for harnessing cytotoxic secondary metabolites. Anticancer Drugs. 2017;28:11–30.
  • Guzmán-Chávez F, Zwahlen RD, Bovenberg RAL, et al. Engineering of the filamentous fungus Penicillium chrysogenumas cell factory for natural products. Front Microbiol. 2018;9:2768.
  • Nielsen JC, Grijseels S, Prigent S, et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol. 2017;2:17044.
  • Keller NP. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. 2019;17:167–180.
  • Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007;370:240–250.
  • Salzer W, Bostrom B, Messinger Y, et al. Asparaginase activity levels and monitoring in patients with acute lymphoblastic leukemia. Leuk Lymphoma. 2018;59:1797–1806.
  • Chand S, Mahajan RV, Prasad JP, et al. A comprehensive review on microbial l-asparaginase: Bioprocessing, characterization, and industrial applications. Biotechnol Appl Biochem. 2020;67:619–647.
  • Li G, Kusari S, Golz C, et al. Epigenetic modulation of endophytic Eupenicillium sp. LG41 by a histone deacetylase inhibitor for production of decalin-containing compounds. J Nat Prod. 2017;80:983–988.
  • Stierle DB, Stierle AA, Girtsman T, et al. Caspase-1 and -3 inhibiting drimane sesquiterpenoids from the extremophilic fungus Penicillium solitum. J Nat Prod. 2012;75:262–266.
  • Stierle DB, Stierle AA, Patacini B, et al. Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. J Nat Prod. 2011;74:2273–2277.
  • Lin ZJ, Lu ZY, Zhu TJ, et al. Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Chem Pharm Bull (Tokyo). 2008;56:217–221.
  • Smetanina OF, Kalinovsky AI, Khudyakova YV, et al. Indole alkaloids produced by a marine fungus isolate of Penicillium janthinellum Biourge. J Nat Prod. 2007;70:2054–2054.
  • Aly AH, Debbab A, Clements C, et al. NF kappa B inhibitors and antitrypanosomal metabolites from endophytic fungus Penicillium sp. isolated from Limonium tubiflorum. Bioorg Med Chem. 2011;19:414–421.
  • Drullion C, Lagarde V, Gioia R, et al. Mycophenolic acid overcomes imatinib and nilotinib resistance of chronic myeloid leukemia cells by apoptosis or a senescent-like cell cycle arrest. Leuk Res Treatment. 2012;2012:861301–861309.
  • Song F, Ren B, Yu K, et al. Quinazolin-4-one coupled with pyrrolidin-2-iminium alkaloids from marine-derived fungus Penicillium aurantiogriseum. Mar Drugs. 2012;10:1297–1306.
  • Ren H, Liu WW. Nidurufin as a new cell cycle inhibitor from marine-derived fungus Penicillium flavidorsum SHK1-27. Arch Pharm Res. 2011;34:901–905.
  • Izadpanah F, Homaei A, Fernandes P, et al. Marine microbial L-asparaginase: biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res. 2018;208:99–112.
  • De Silva ED, Geiermann AS, Mitova MI, et al. Isolation of 2-pyridone alkaloids from a new zealand marine-derived Penicillium species. J Nat Prod. 2009;72:477–479.
  • Iwamoto C, Yamada T, Ito Y, et al. Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron. 2001;57:2997–3004.
  • Numata A, Takahashi C, Ito Y, et al. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett. 1993;34:2355–2358.
  • Overy DP, Larsen TO, Dalsgaard PW, et al. Andrastin A and barceloneic acid metabolites, protein farnesyl transferase inhibitors from Penicillium albocoremium: chemotaxonomic significance and pathological implications. Mycol Res. 2005;109:1243–1249.
  • Liu W, Gu Q, Zhu W, et al. Dihydrotrichodimerol and tetrahydrotrichodimerol, two new bisorbicillinoids, from a marine-derived Penicillium terrestre. J Antibiot (Tokyo). 2005;58:621–624.
  • Iwamoto C, Minoura K, Oka T, et al. Absolute stereostructures of novel cytotoxic metabolites, penostatins A-E, from a Penicillium species separated from an Enteromorpha alga. Tetrahedron. 1999;55:14353–14368.
  • Iwamoto C, Minoura K, Hagishita S, et al. Penostatins F-I, novel cytotoxic metabolites from a Penicillium species separated from an Enteromorpha marine alga. J Chem Soc, Perkin Trans 1. 1998;3:449–456.
  • Amagata T, Minoura K, Numata A. Cytotoxic metabolites produced by a fungal strain from a Sargassum alga. J Antibiot. 1998;51:432–434.
  • Mayerl F, Gao Q, Huang S, et al. Eupenifeldin, a novel cytotoxic bistropolone from Eupenicillium brefeldianum. J Antibiot (Tokyo). 1993;46:1082–1088.
  • Proksa B, Uhrín D, Adamcova J, et al. Vermixocins A and B, two novel metabolites from Penicillium vermiculatum. J. Antibiot. 1992;245:1268–1272.
  • Proksa B, Uhrín D, Adamcova J, et al. Vermilutin, a xanthone from Penicillium vermiculatum. Phytochemistry. 1992;306:1442–1444.
  • Sun Y, Takada K, Takemoto Y, et al. Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. J Nat Prod. 2012;75:111–114.
  • Kuramochi K, Yukizawa S, Ikeda S, et al. Syntheses and applications of fluorescent and biotinylated epolactaene derivatives: Epolactaene and its derivative induce disulfide formation. Bioorg Med Chem. 2008;16:5039–5049.
  • Koizumi Y, Arai M, Tomoda H, et al. Oxaline, a fungal alkaloid, arrests the cell cycle in M phase by inhibition of tubulin polymerization. Biochim Biophys Acta. 2004;1693:47–55.
  • Ries MI, Ali H, Lankhorst PP, et al. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem. 2013;288:37289–37295.
  • Kawai K, Shiojiri H, Nakamaru T, et al. Cytotoxicity and genotoxicity of xenoclauxin and desacetyl duclauxin from Penicillium duclauxii (delacroix). Cell Biol Toxicol. 1985;1:1–10.
  • Kiyoshi K, Taketoshi K, Hideki M, et al. A comparative study on cytotoxicities and biochemical properties of anthraquinone mycotoxins emodin and skyrin from Penicillium islandicum sopp. Toxicol Lett. 1984;20:155–160.
  • Gautschi JT, Amagata T, Amagata A, et al. Expanding the strategies in natural product studies of marine-derived fungi: a chemical investigation of Penicillium obtained from deep water sediment. J Nat Prod. 2004;67:362–367.
  • Stierle AA, Stierle DB, Girtsman T. Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. J Nat Prod. 2012;75:344–350.
  • Bringmann G, Lang G, Mühlbacher J, et al. Sorbicillactone A: a structurally unprecedented bioactive novel-type alkaloid from a sponge-derived fungus. Prog Mol Subcell Biol. 2003;37:231–253.
  • Knudsen PB, Hanna B, Ohl S, et al. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia. 2014;28:1289–1298.
  • Gao X, Zhou Y, Sun H, et al. Effects of a spiroketal compound Peniciketal A and its molecular mechanisms on growth inhibition in human leukemia. Toxicol Appl Pharmacol. 2019;366:1–9.
  • Wu CJ, Yi L, Cui CB, et al. Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59. Mar Drugs. 2015;13:2465–2487.
  • Bladt TT, Durr C, Knudsen PB, et al. Bio-activity and dereplication-based discovery of ophiobolins and other fungal secondary metabolites targeting leukemia cells. Molecules. 2013;18:14629–14650.
  • Shigemori H, Wakuri S, Yazawa K, et al. Fellutamides A and B, cytotoxic peptides from a marine fish-possessing fungus Penicillium fellutanum. Tetrahedron. 1991;47:8529–8534.
  • Darsih C, Prachyawarakorn V, Wiyakrutta S, et al. Cytotoxic metabolites from the endophytic fungus Penicillium chermesinum: discovery of a cysteine-targeted Michael acceptor as a pharmacophore for fragment-based drug discovery, bioconjugation and click reactions. RSC Adv. 2015;5:70595–70603.
  • Wang N, Dong Y, Yang Y, et al. Penicimutanin C, a new alkaloidal compound, isolated from a neomycin-resistant mutant 3-f-31of Penicillium purpurogenum G59. Chem Biodivers. 2020;17:e2000241.
  • Duan Q, Kou Y, Clark NR, et al. Metasignatures identify two major subtypes of breast cancer. CPT Pharmacometrics Syst Pharmacol. 2013;2:1–10.
  • Keller NP, Turner G, Bennett JW. Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol. 2005;3:937–947.
  • Dewick PM. Medicinal of natural products. Chichester (UK): John Wiley & Sons; 2009.
  • Chen L, Li X, Cheng M, et al. Iso-pencillixanthone A from a marine-derived fungus reverses multidrug resistance in cervical cancer cells through down-regulating P-gp and re-activating apoptosis. RSC Adv. 2018;8:41192–41206.
  • Zhang P, Wei Q, Yuan X, et al. Newly reported alkaloids produced by marine-derived Penicillium species (covering 2014-2018). Bioorg Chem. 2020;99:103840.
  • Liu S, Su M, Song SJ, et al. Marine-derived Penicillium species as producers of cytotoxic metabolites. Mar Drugs. 2017;15:329.
  • Chan A, Gilfillan C, Templeton N, et al. Induction of accelerated senescence by the microtubule-stabilizing agent peloruside A. Invest New Drugs. 2017;35:706–717.
  • Sone H, Kigoshi H, Yamada K. Aurisides A and B, cytotoxic macrolide glycosides from the Japanese sea hare Dolabella auricularia. J Org Chem. 1996;61:8956–8960.
  • Martín MJ, Coello L, Fernández R, et al. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J Am Chem Soc. 2013;135:10164–10171.
  • Pera B, Barasoain I, Pantazopoulou A, et al. New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem Biol. 2013;8:2084–2094.
  • Aviles P, Domínguez JM, Guillen MJ, et al. MI130004, a novel antibody-drug conjugate combining trastuzumab with a molecule of marine origin, shows outstanding in vivo activity against HER2-expressing tumors. Mol Cancer Ther. 2018;17:786–794.
  • Calleja R, Kabashneh S. Acute myeloid leukemia: a “head to toe” examination. Cureus. 2020;12:6–12.
  • Van Deventer HW, Burgents JE, Wu QP, et al. The inflammasome component Nlrp3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res. 2010;70:10161–10169.
  • Janssen L, Blijlevens NMA, Drissen MMCM, et al. Fatigue in chronic myeloid leukemia patients on tyrosine kinase inhibitor therapy: predictors and the relationship with physical activity fatigue in chronic myeloid leukemia patients on tyrosine kinase inhibitor therapy: predictors and the relationship. Haematologica. 2020.
  • Bower H, Björkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016;34:2851–2857.
  • Efficace F, Baccarani M, Breccia M, et al. Chronic fatigue is the most important factor limiting health-related quality of life of chronic myeloid leukemia patients treated with imatinib. Leukemia. 2013;27:1511–1519.
  • Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30:1663–1669.
  • Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105:2524–2539.
  • Man LM, Morris AL, Keng M. New therapeutic strategies in acute lymphocytic leukemia. Curr Hematol Malig Rep. 2017;12:197–206.
  • Casciello F, Windloch K, Gannon F, et al. Functional role of G9a histone methyltransferase in cancer. Front Immunol. 2015;6:3–9.
  • Bringmann G, Gulder TAM, Lang G, et al. Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar Drugs. 2007;5:23–30.
  • Yang J, Nie J, Ma X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer. 2019;18:1–28.
  • Aalipour A, Advani RH. Bruton’s tyrosine kinase inhibitors and their clinical potential in the treatment of B-cell malignancies: focus on ibrutinib. Ther Adv Hematol. 2014;5:121–133.
  • Shao RG, Shimizu T, Pommier Y. Brefeldin A is a potent inducer of apoptosis in human cancer cells independently of p53. Exp Cell Res. 1996;227:190–196.
  • Souza PM, de Freitas MM, Cardoso SL, et al. Optimization and purification of L-asparaginase from fungi: A systematic review. Crit Rev Oncol Hematol. 2017;120:194–202.
  • Lopes AM, Oliveira-Nascimento L. d, Ribeiro A, et al. Therapeutic l-asparaginase: upstream, downstream and beyond. Crit Rev Biotechnol. 2017;37:82–99.
  • Yun MK, Nourse A, White SW, et al. Crystal structure and allosteric regulation of the cytoplasmic Escherichia coli l-asparaginase I. J Mol Biol. 2007;369:794–811.
  • El-Refai HA, El-Shafei MS, Mostafa H, et al. Statistical optimization of anti-leukemic enzyme l-asparaginase production by Penicillium cyclopium. Curr Trends Biotechnol Pharm. 2014;8:130–142.
  • Shrivastava A, Khan AA, Shrivastav A, et al. Kinetic studies of L-asparaginase from Penicillium digitatum. Prep Biochem Biotechnol. 2012;42:574–581.
  • Sharma D, Singh K, Singh K, et al. Insights into the microbial L-asparaginases: from production to practical applications. Curr Protein Pept Sci. 2019;20:452–464.
  • Alhussaini MS. Mycobiota of wheat flour and detection of α- amylase and L-asparaginase enzymes. Life Sci J. 2013;10:1112–1122.
  • Vimal A, Kumar A. In vitro screening and in silico validation revealed key microbes for higher production of significant therapeutic enzyme L-asparaginase. Enzyme Microb Technol. 2017;98:9–17.
  • Bhavana NS, Prakash HS, Nalini MS. Antioxidative and L-asparaginase potentials of fungal endophytes from Rauvolfia densiflora (Apocynaceae), an ethnomedicinal species of the Western Ghats. Czech Mycol. 2019;71:187–203.
  • El-Refai HA, Shafei MS, Mostafa H, et al. Comparison of free and immobilized L-asparaginase synthesized by gamma-irradiated Penicillium cyclopium. Pol J Microbiol. 2016;65:43–50.
  • Shafei MS, El-Refai HA, Mostafa H, et al. Purification, characterization and kinetic properties of Penicillium cyclopium L-asparaginase: Impact of lasparaginase on acrylamide content in potato products and its cytotoxic activity. Curr Trends Biotechnol Pharm. 2015;9:132–140.
  • Lee JM, Tan WS, Ting ASY. Revealing the antimicrobial and enzymatic potentials of culturable fungal endophytes from tropical pitcher plants (Nepenthes spp.). Mycosphere. 2014;5:364–377.
  • Chow YY, Ting ASY. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res. 2015;6:869–876.
  • Da Silva Santos MG, Pereira Bezerra JD, Svedese VM, et al. Screening of endophytic fungi from cactus of the Brazilian tropical dry forest according to their L-asparaginase activity. Sydowia. 2015;67:147–156.
  • Sundaramoorthi C, Dharamsi A. Evaluation of bioparameters in the production of L-asparaginase from marine thermophilic fungal isolate Penicillium notatum and its immobilization studies. Rese Jour of Pharm and Technol. 2019;12:5505–5508.
  • Cardoso SL, de Freitas MM, de Souza PM, et al. Optimization of aqueous two-phase micellar system for partial purification of L-asparaginase from Penicillium sp. grown in wheat bran as agro-industrial residue. Brazilian J Microbiol. 2020;51:979–988.
  • Vieira WF, Correa HT, Silveira Campos E, et al. A novel multiple reactor system for the long-term production of L-asparaginase by Penicillium sp. LAMAI 505. Process Biochem. 2020;90:23–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.