413
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Double minute chromosomes in acute myeloid leukemia and myelodysplastic syndromes are associated with complex karyotype, monosomal karyotype, TP53 deletion, and TP53 mutations

ORCID Icon, , , , , , & ORCID Icon show all
Pages 2466-2474 | Received 29 Dec 2020, Accepted 12 Apr 2021, Published online: 27 Apr 2021

References

  • Levan A, Levan G. Have double minutes functioning centromeres? Hereditas. 1978;88(1):81–92.
  • Barker PE, Hsu TC. Are double minutes chromosomes? Exp Cell Res. 1978;113(2):456–458.
  • Haaf T, Schmid M. Analysis of double minutes and double minute-like chromatin in human and murine tumor cells using antikinetochore antibodies. Cancer Genet Cytogenet. 1988;30(1):73–82.
  • Lin CC, Meyne J, Sasi R, et al. Apparent lack of telomere sequences on double minute chromosomes. Cancer Genet Cytogenet. 1990;48(2):271–274.
  • Furuya T, Morgan R, Berger CS, et al. Presence of telomeric sequences on deleted chromosomes and their absence on double minutes in cell line HL-60. Cancer Genet Cytogenet. 1993;70(2):132–135.
  • Krawczun MS, Camargo M, Cervenka J. Patterns of BrDU incorporation in homogenously staining regions and double minutes. Cancer Genet Cytogenet. 1986;21(3):257–265.
  • Takayama S, Uwaike Y. Analysis of the replication mode of double minutes using the PCC technique combined with BrDU labelling. Chromosoma. 1988;97(3):198–203.
  • Oobatake Y, Shimizu N. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer. 2020;59(3):133–143.
  • Storlazzi CT, Fioretos T, Surace C, et al. MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. Hum Mol Genet. 2006;15(6):933–942.
  • Zhu J, Yu Y, Meng X, et al. De novo-generated small palindromes are characteristic of amplicon boundary junction of double minutes. Int J Cancer. 2013;133(4):797–806.
  • Mitelman F, Johansson B, Mertens FE. Mitelman database of chromosome aberrations and gene fusions in cancer; 2020. [cited 2020 Nov 8]. Available from: https://mitelmandatabase.isb-cgc.org.
  • Meng X, Qi X, Guo H, et al. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet. 2015;52(2):135–144.
  • Yu L, Zhao Y, Quan C, et al. Gemcitabine eliminates double minute chromosomes from human ovarian cancer cells. PLOS One. 2013;8(8):e71988.
  • Thomas L, Stamberg J, Gojo I, et al. Double minute chromosomes in monoblastic (M5) and myeloblastic (M2) acute myeloid leukemia: two case reports and a review of literature. Am J Hematol. 2004;77(1):55–61.
  • Huh YO, Tang G, Talwalkar SS, et al. Double minute chromosomes in acute myeloid leukemia, myelodysplastic syndromes, and chronic myelomonocytic leukemia are associated with micronuclei, MYC or MLL amplification, and complex karyotype. Cancer Genet. 2016;209(7–8):313–320.
  • T Ang G, DiNardo C, Zhang L, et al. MLL gene amplification in acute myeloid leukemia and myelodysplastic syndromes is associated with characteristic clinicopathological findings and TP53 gene mutation. Hum Pathol. 2015;46(1):65–73.
  • Bruckert P, Kappler R, Scherthan H, et al. Double minutes and c-MYC amplification in acute myelogenous leukemia: are they prognostic factors? Cancer Genet Cytogenet. 2000;120(1):73–79.
  • Fan Y, Mao R, Lv H, et al. Frequency of double minute chromosomes and combined cytogenetic abnormalities and their characteristics. J Appl Genetics. 2011;52(1):53–59.
  • Benner SE, Wahl GM, Von Hoff DD. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anticancer Drugs. 1991;2(1):11–25.
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405.
  • Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447.
  • Breems DA, Van Putten WL, De Greef GE, et al. Monosomal karyotype in acute myeloid leukemia: better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29):4791–4797.
  • Vaidya R, Caramazza D, Begna KH, et al. Mosomal karyotype in primary myelofibrosis is detrimental to both overall and leukemia free survival. Blood. 2011;117(21):5612–5615.
  • National Cancer Institute. SEER cancer statistics review, 1975-2015: overview, median age at diagnosis; 2018. Available from: https://seer.cancer.gov/csr/1975_2018/
  • Schanz J, Tuchler H, Sole F, et al. Monosomal karyotype in MDS: explaining the poor prognosis? Leukemia. 2013;27(10):1988–1995.
  • Korbel JO, Campbell PJ. Criteria for inference of chromothripsis in cancer genomes. Cell. 2013;152(6):1226–1236.
  • L Abbate A, Tolomeo D, Cifola I, et al. MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. Leukemia. 2018;32(10):2152–2166.
  • Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27–40.
  • Rausch T, Jones DT, Zapatka M, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148(1–2):59–71.
  • Gao JH, Chen YH, Mina A, et al. Unique morphologic and genetic characteristics of acute myeloid leukemia with chromothripsis: a clinicopathologic study from a single institution. Hum Pathol. 2020;98:22–31.
  • Tefferi A, Idossa D, Lasho TL, et al. Mutations and karyotype in myelody plastic syndromes: TP53 clusters with monosomal karyotype, RUNX1 with trisomy21, and SF3B1 with inv(3)(q21q26.2)and del(11q). Blood Cancer J. 2017;7(12):658.
  • Bochtler T, Granzow M, Stölzel F, et al. Marker chromosomes can arise from chromothripsis and predict adverse prognosis in acute myeloid leukemia. Blood. 2017;129(10):1333–1342.
  • Yin Y, Tainsky MA, Bischoff FZ, et al. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell. 1992;70(6):937–948.
  • Livingstone LR, White A, Sprouse J, et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992;70(6):923–935.
  • Stengel A, Kern W, Haferlach T, et al. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL Fan analysis of 3307 cases. Leukemia. 2017;31(3):705–711.
  • Rucker FG, Schlenk RF, Bullinger L, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119(9):2114–2121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.