592
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Artificial intelligence models in chronic lymphocytic leukemia – recommendations toward state-of-the-art

, & ORCID Icon
Pages 265-278 | Received 02 Jun 2021, Accepted 15 Aug 2021, Published online: 06 Oct 2021

References

  • Andersen MA, Eriksen CT, Brieghel C, et al. Incidence and predictors of infection among patients prior to treatment of chronic lymphocytic leukemia: a Danish Nationwide Cohort Study. Haematologica. 2018;103(7):e300–e303.
  • Crassini KR, Best OG, Mulligan SP. Immune failure, infection and survival in chronic lymphocytic leukemia. Haematologica. 2018;103(7):e329.
  • Andersen MA, Niemann CU. Immune failure, infection and survival in chronic lymphocytic leukemia in Denmark. Haematologica. 2018;103(7):e330.
  • Strati P, Shanafelt TD. Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification. Blood. 2015;126(4):454–462.
  • Moreira J, Rabe KG, Cerhan JR, et al. Infectious complications among individuals with clinical monoclonal B-cell lymphocytosis (MBL): a cohort study of newly diagnosed cases compared to controls. Leukemia. 2013;27(1):136–141.
  • Andersen MA, Moser CE, Lundgren J, et al. Epidemiology of bloodstream infections in patients with chronic lymphocytic leukemia: a longitudinal nation-wide cohort study. Leukemia. 2019;33(3):662–670.
  • Andersen MA, Niemann CU, Rostgaard K, et al. Differences and temporal changes in risk of invasive pneumococcal disease in adults with hematological malignancies: results from a nationwide 16-year cohort study. Clin Infect Dis. 2021;72(3):463–471.
  • da Cunha-Bang C, Simonsen J, Rostgaard K, et al. Improved survival for patients diagnosed with chronic lymphocytic leukemia in the era of chemo-immunotherapy: a Danish Population-Based Study of 10455 patients. Blood Cancer J. 2016;6(11):e499.
  • Agius R, Brieghel C, Andersen MA, et al. Machine learning can identify newly diagnosed patients with CLL at high risk of infection. Nat. Commun. 2020;11:363.
  • Molica S. Chronic lymphocytic leukemia prognostic models in real life: still a long way off. Expert Rev Hematol. 2021;14(2):137–141.
  • Kreuzberger N, Damen JA, Trivella M, et al. Prognostic models for newly-diagnosed chronic lymphocytic leukaemia in adults: a systematic review and meta-analysis. Cochrane Database Syst Rev. 2020;7:CD012022.
  • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–138.
  • Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014;14:40.
  • Molica S, Giannarelli D. Prognostic models for chronic lymphocytic leukemia (CLL): a systematic review and meta-analysis. Leukemia. 2021;35(2):615–618.
  • Lee C, Zame W, Alaa A, et al. Temporal quilting for survival analysis; 2019.
  • Delgado J, Doubek M, Baumann T, et al. Chronic lymphocytic leukemia: a prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL-IPI. Am J Hematol. 2017;92(4):375–380.
  • Bulian P, Rossi D, Forconi F, et al. IGHV gene mutational status and 17p deletion are independent molecular predictors in a comprehensive clinical-biological prognostic model for overall survival prediction in chronic lymphocytic leukemia. J Transl Med. 2012;10:18.
  • International CLL-IPI Working Group. An International Prognostic Index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17:779–790.
  • Wierda WG, O'Brien S, Wang X, et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109(11):4679–4685.
  • Soumerai JD, Ni A, Darif M, et al. Prognostic risk score for patients with relapsed or refractory chronic lymphocytic leukaemia treated with targeted therapies or chemoimmunotherapy: a retrospective, pooled cohort study with external validations. Lancet Haematol. 2019;6(7):e366–e374.
  • Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8):1403–1412.
  • Pflug N, Bahlo J, Shanafelt TD, et al. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood. 2014;124(1):49–62.
  • Molica S, Giannarelli D, Mirabelli R, et al. Unavailability of thymidine kinase does not preclude the use of German Comprehensive Prognostic Index: results of an external validation analysis in early chronic lymphocytic leukemia and comparison with MD Anderson Cancer Center Model. Eur J Haematol. 2016;96(1):72–77.
  • Molica S, Shanafelt TD, Giannarelli D, et al. The chronic lymphocytic leukemia International Prognostic Index predicts time to first treatment in early CLL: independent validation in a prospective cohort of early stage patients. Am J Hematol. 2016;91(11):1090–1095.
  • Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82.
  • Katzman J, Shaham U, Cloninger A, et al. Deep survival: a deep Cox proportional hazards network; 2016.
  • Deep multi-task Gaussian processes for survival analysis with competing risks. Proceedings of the International Conference on Neural Information Processing Systems; 2017.
  • Faraggi D, Simon R. A neural network model for survival data. Stat Med. 1995;14(1):73–82.
  • Lee C, Zame W, Yoon J, et al. DeepHit: a deep learning approach to survival analysis with competing risks. Proceedings of the AAAI Conference on Artificial Intelligence; 2018.
  • Luck M, Sylvain T, Cardinal H, et al. Deep learning for patient-specific kidney graft survival analysis. arXiv; 2017.
  • Bellot A, van der Schaar M. Multitask boosting for survival analysis with competing risks. Proceedings of the International Conference on Neural Information Processing Systems; 2018.
  • Spooner A, Chen E, Sowmya A, et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci Rep. 2020;10(1):20410.
  • Soave DM, Strug LJ. Testing calibration of Cox survival models at extremes of event risk. Front Genet. 2018;9:177.
  • Langerbeins P, Bahlo J, Rhein C, et al. The CLL12 trial protocol: a placebo-controlled double-blind phase III study of ibrutinib in the treatment of early-stage chronic lymphocytic leukemia patients with risk of early disease progression. Future Oncol. 2015;11(13):1895–1903.
  • Herling CD, Cymbalista F, Groß-Ophoff-Müller C, et al. Early treatment with FCR versus watch and wait in patients with stage Binet A high-risk chronic lymphocytic leukemia (CLL): a randomized phase 3 trial. Leukemia. 2020;34(8):2038–2050.
  • Wang P, Li Y, Reddy CK. Machine learning for survival analysis. ACM Comput Surv. 2019;51(6):1–36.
  • Ishdorj G, Streu E, Lambert P, et al. IgA levels at diagnosis predict for infections, time to treatment, and survival in chronic lymphocytic leukemia. Blood Adv. 2019;3(14):2188–2198.
  • Tissino E, Pozzo F, Benedetti D, et al. CD49d promotes disease progression in chronic lymphocytic leukemia: new insights from CD49d bimodal expression. Blood. 2020;135(15):1244–1254.
  • Rigolin GM, Saccenti E, Bassi C, et al. Extensive next-generation sequencing analysis in chronic lymphocytic leukemia at diagnosis: clinical and biological correlations. J Hematol Oncol. 2016;9(1):88.
  • Böttcher S, Ritgen M, Fischer K, et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012;30(9):980–988.
  • Crassini KR, Zhang E, Balendran S, et al. Humoral immune failure defined by immunoglobulin class and immunoglobulin G subclass deficiency is associated with shorter treatment-free and overall survival in chronic lymphocytic leukaemia. Br J Haematol. 2018;181(1):97–101.
  • Andersen MA, Vojdeman FJ, Andersen MK, et al. Hypogammaglobulinemia in newly diagnosed chronic lymphocytic leukemia is a predictor of early death. Leuk Lymphoma. 2016;57(7):1592–1599.
  • Brieghel C, da Cunha-Bang C, Yde CW, et al. The number of signaling pathways altered by driver mutations in chronic lymphocytic leukemia impacts disease outcome. Clin Cancer Res. 2020;26(6):1507–1515.
  • Tissino E, Benedetti D, Herman SEM, et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018;215(2):681–697.
  • Hernández JÁ, Hernández-Sánchez M, Rodríguez-Vicente AE, et al. A low frequency of losses in 11q chromosome is associated with better outcome and lower rate of genomic mutations in patients with chronic lymphocytic leukemia. PLOS One. 2015;10(11):e0143073.
  • Huang SJT, Gillan TL, Gerrie AS, et al. Influence of clone and deletion size on outcome in chronic lymphocytic leukemia patients with an isolated deletion 13q in a population-based analysis in British Columbia, Canada. Genes Chromosomes Cancer. 2016;55(1):16–24.
  • Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205–1216.
  • Shea LK, Honjo K, Redden DT, et al. Fc receptor-like 2 (FCRL2) is a novel marker of low-risk CLL and refines prognostication based on IGHV mutation status. Blood Cancer J. 2019;9(6):47.
  • Hu B, Patel KP, Chen H-C, et al. Association of gene mutations with time-to-first treatment in 384 treatment-naive chronic lymphocytic leukaemia patients. Br J Haematol. 2019;187(3):307–318.
  • Else M, Blakemore SJ, Strefford JC, et al. The association between deaths from infection and mutations of the BRAF, FBXW7, NRAS and XPO1 genes: a report from the LRF CLL4 trial. Leukemia. 2021.
  • Wang H-Q, Jia L, Li Y-T, et al. Increased autocrine interleukin-6 production is significantly associated with worse clinical outcome in patients with chronic lymphocytic leukemia. J Cell Physiol. 2019;234(8):13994–14006.
  • Herishanu Y, Polliack A, Shenhar-Tsarfaty S, et al. Increased serum C-reactive protein levels are associated with shorter survival and development of second cancers in chronic lymphocytic leukemia. Ann Med. 2017;49(1):75–82.
  • Roos-Weil D, Nguyen-Khac F, Chevret S, et al. Mutational and cytogenetic analyses of 188 CLL patients with trisomy 12: a retrospective study from the French Innovative Leukemia Organization (FILO) Working Group. Genes Chromosomes Cancer. 2018;57(11):533–540.
  • deAndrés-Galiana EJ, Fernández-Martínez JL, Luaces O, et al. Analysis of clinical prognostic variables for chronic lymphocytic leukemia decision-making problems. J Biomed Inform. 2016;60:342–351.
  • Tailoring the targeted treatment of chronic lymphocytic leukemia — ERA-LEARN [Internet]; 2021 [cited 2021 May 15]. Available from: https://www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/tailoring-the-targeted-treatment-of-chronic-lymphocytic-leukemia
  • Haider H, Hoehn B, Davis S, et al. Effective ways to build and evaluate individual survival distributions. arXiv; 2018.
  • Molica S, Mauro FR, Callea V, et al. The utility of a prognostic index for predicting time to first treatment in early chronic lymphocytic leukemia: the GIMEMA experience. Haematologica. 2010;95(3):464–469.
  • Moncada-Torres A, van Maaren MC, Hendriks MP, et al. Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival. Sci Rep. 2021;11(1):6968.
  • Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749–760.
  • Lundberg SM, Lee S-I. A unified approach to interpreting model predictions; 2017.
  • Al-Sawaf O, Zhang C, Tandon M, et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020;21(9):1188–1200.
  • Gentile M, Shanafelt TD, Rossi D, et al. Validation of the CLL-IPI and comparison with the MDACC prognostic index in newly diagnosed patients. Blood. 2016;128(16):2093–2095.
  • Isabel G-GyM, Maria P, Sanchez Maria H, et al. Validation of the new International Prognostic Index for chronic lymphocytic leukaemia (CLL-IPI) and modified score used in the MD Anderson Cancer Center (MDACC). 2016;101:338.
  • Muñoz-Novas C, Poza-Santaella M, González-Gascón Y Marín I, et al. The International Prognostic Index for patients with chronic lymphocytic leukemia has the higher value in predicting overall outcome compared with the Barcelona-Brno biomarkers only prognostic model and the MD Anderson Cancer Center Prognostic Index. Biomed Res Int. 2018;2018:1–8.
  • Da Cunha-Bang C, Agius R, Kater AP, et al. PreVent-ACaLL short-term combined acalabrutinib and venetoclax treatment of newly diagnosed patients with CLL at high risk of infection and/or early treatment, who do not fulfil IWCLL treatment criteria for treatment. A randomized study with extensive immune phenotyping. Blood. 2019;134(Suppl. 1):4304.
  • Klausen TW, Gregersen H, Abildgaard N, et al. The majority of newly diagnosed myeloma patients do not fulfill the inclusion criteria in clinical phase III trials. Leukemia. 2019;33(2):546–549.
  • da Cunha-Bang C, Christiansen I, Niemann CU. The CLL-IPI applied in a population-based cohort. Blood. 2016;128(17):2181–2183.
  • Baliakas P, Mattsson M, Stamatopoulos K, et al. Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Intern Med. 2016;279(4):347–357.
  • Niemann CU, Herman SEM, Maric I, et al. Disruption of in vivo chronic lymphocytic leukemia tumor–microenvironment interactions by ibrutinib-findings from an investigator-initiated phase II study. Clin Cancer Res. 2016;22(7):1572–1582.
  • Burger JA. Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Curr Opin Oncol. 2012;24(6):643–649.
  • Niemann CU, Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol. 2013;23(6):410–421.
  • Paredes BR, Argyriou A, Berthouze N, et al. Exploiting unrelated tasks in multi-task learning; 2012.
  • Fei N, Lu Z, Gao Y, et al. Meta-learning across meta-tasks for few-shot learning. arXiv; 2020.
  • Vanschoren J. Meta-learning: a survey. arXiv; 2018.
  • Zhang XS, Tang F, Dodge HH, et al. MetaPred: meta-learning for clinical risk prediction with limited patient electronic health records. KDD. 2019;2019:2487–2495.
  • Liu L, Liu Z, Wu H, et al. Multi-task learning via adaptation to similar tasks for mortality prediction of diverse rare diseases. arXiv; 2020.
  • Jain P, O’Brien S. Richter’s transformation in chronic lymphocytic leukemia. Oncology. 2012;26:1146–1152.
  • Strati P, Abruzzo LV, Wierda WG, et al. Second cancers and Richter transformation are the leading causes of death in patients with trisomy 12 chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2015;15(7):420–427.
  • Rossi D, Spina V, Deambrogi C, et al. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood. 2011;117(12):3391–3401.
  • Brieghel C, Aarup K, Torp MH, et al. Clinical outcomes in patients with multi-hit TP53 chronic lymphocytic leukemia treated with ibrutinib. Clin Cancer Res. 2021.
  • de Weerdt I, Hofland T, de Boer R, et al. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019;3(17):2642–2652.
  • Konečný J, McMahan HB, Yu Fx Richtarik P, et al. Federated learning: strategies for improving communication efficiency; 2016.
  • Xu L, Skoularidou M, Cuesta-Infante A, et al. Modeling tabular data using conditional GAN. Proceedings of the International Conference on Neural Information Processing Systems; 2019.
  • Tucker A, Wang Z, Rotalinti Y, et al. Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. Npj Digital Med. 2020;3:147.
  • Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–252.
  • Pham H, Dai Z, Xie Q, et al. Meta pseudo labels. arXiv; 2020.
  • Lee C, Yoon J, van der Schaar M. Dynamic-DeepHit: a deep learning approach for dynamic survival analysis with competing risks based on longitudinal data. IEEE Trans Biomed Eng. 2020;67(1):122–133.
  • Vieira D, Gimenez G, Marmerola G, et al. XGBoost survival embeddings: improving statistical properties of XGBoost survival analysis implementation [Internet]; 2020 [cited 2021 Aug 9]. Available from: http://github.com/loft-br/xgboost-survival-embeddings
  • Groenwold RHH, White IR, Donders ART, et al. Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis. Can Med Assoc J. 2012;184(11):1265–1269.
  • Feng D, Zhao L. BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values. CoRR. 2021.
  • Lundberg SM, Erion GG, Lee S-I. Consistent individualized feature attribution for tree ensembles. arXiv; 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.