216
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

PHi-RACE: PGIMER in-house rapid & cost effective classifier for the detection of BCR-ABL1-like acute lymphoblastic leukaemia in Indian patients

, , , , , , , , , , , , & show all
Pages 633-643 | Received 16 Jun 2021, Accepted 20 Oct 2021, Published online: 16 Nov 2021

References

  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405.
  • Shiraz P, Payne KJ, Muffly L. The current genomic and molecular landscape of philadelphia-like acute lymphoblastic leukemia. IJMS. 2020;21(6):2193.
  • Chiaretti S, Messina M, Foa R. BCR/ABL1-like acute lymphoblastic leukemia: how to diagnose and treat. Cancer. 2019;125(2):194–204.
  • Ofran Y, Izraeli S. BCR-ABL (Ph)-like acute leukemia-pathogenesis, diagnosis and therapeutic options. Blood Rev. 2017;31(2):11–16.
  • Jain S, Abraham A. BCR-ABL1-like B-acute lymphoblastic leukemia/lymphoma: a comprehensive review. Arch Pathol Lab Med. 2020;144(2):150–155.
  • Dias A, Kenderian SJ, Westin GF, et al. Novel therapeutic strategies in acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2016;11(4):253–264.
  • Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–1015.
  • Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129(5):572–581.
  • Roberts KG, Gu Z, Payne-Turner D, et al. High frequency and poor outcome of philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35(4):394–401.
  • Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the children's oncology group. Blood. 2017;129(25):3352–3361.
  • Chiaretti S, Messina M, Grammatico S, et al. Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: clinical, prognostic and therapeutic implications. Br J Haematol. 2018;181(5):642–652.
  • Roberts KG, Reshmi SC, Harvey RC, et al. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the children's oncology group. Blood. 2018;132(8):815–824.
  • Mullighan CG, Su X, Zhang J, Children's Oncology Group, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–480.
  • Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–134.
  • Boer JM, Koenders JE, Van der Holt B, et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015;100(7):e261–e264.
  • Herold T, Schneider S, Metzeler KH, et al. Adults with philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica. 2017;102(1):130–138.
  • Chen IM, Harvey RC, Mullighan CG, et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a children's oncology group study. Blood. 2012;119(15):3512–3522.
  • Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2010;107(1):252–257.
  • Fasan A, Kern W, Nadarajah N, et al. Three steps to the diagnosis of adult Ph-like ALL. Blood. 2015;126(23):2610.
  • Harvey RC, Kang H, Roberts KG, et al. Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-Precursor acute lymphoblastic leukemia (ALL) patients with a philadelphia Chromosome-Like (or “Ph-like”) signature for therapeutic targeting and clinical intervention. Blood. 2013;122(21):826.
  • Heatley SL, Sadras T, Kok CH, et al. High prevalence of relapse in children with philadelphia-like acute lymphoblastic leukemia despite risk-adapted treatment. Haematologica. 2017;102(12):e490–e3.
  • Sharma M, Sachdeva MU, Varma N, et al. Characterization of immunophenotypic aberrancies in adult and childhood acute lymphoblastic leukemia: a study from Northern India. J Can Res Ther. 2016; 12(2):620–626.
  • Pakakasama S, Kajanachumpol S, Kanjanapongkul S, et al. Simple multiplex RT-PCR for identifying common fusion transcripts in childhood acute leukemia. Int J Lab Hematol. 2008;30(4):286–291.
  • Bhatia P, Binota J, Varma N, et al. Incidence of common fusion transcripts in adult and pediatric acute myeloid leukemia (aml) cases: experience of a tertiary care research institute. Mediterr J Hematol Infect Dis. 2012;4(1):e2012042.
  • Xie F, Xiao P, Chen D, et al. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80(1):75–84.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408.
  • Stahlberg A, Kubista M, Pfaffl M. Comparison of reverse transcriptases in gene expression analysis. Clin Chem. 2004;50(9):1678–1680.
  • Silver N, Best S, Jiang J, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006;7:33.
  • Aggarwal A, Jamwal M, Viswanathan GK, et al. Optimal reference gene selection for expression studies in human reticulocytes. J Mol Diagn. 2018;20(3):326–333.
  • Trehan A, Bansal D, Varma N, et al. Improving outcome of acute lymphoblastic leukemia with a simplified protocol: report from a tertiary care center in North India. Pediatr Blood Cancer. 2017;64(4):e26281.
  • Totadri S, Singh M, Trehan A, et al. Keeping PACE with Ph positive to Ph-like detection in B-Lineage acute lymphoblastic leukemia: a practical and cost effective (PACE) approach in a resource constrained setting. Indian J Hematol Blood Transfus. 2018;34(4):595–601.
  • Patkar N, Bhanshe P, Rajpal S, et al. NARASIMHA: Novel assay based on targeted RNA sequencing to identify chimeric gene fusions in hematological malignancies. Blood Cancer J. 2020;10(5):50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.