502
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Loss of function mutations of BCOR in classical Hodgkin lymphoma

ORCID Icon, , , , , , , , , , , , , , & show all
Pages 1080-1090 | Received 09 Jul 2021, Accepted 29 Nov 2021, Published online: 27 Dec 2021

References

  • Gao Z, Zhang J, Bonasio R, et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012;45(3):344–356.
  • Aloia L, Di Stefano B, Di Croce L. Polycomb complexes in stem cells and embryonic development. Development. 2013;140(12):2525–2534.
  • Koppens M, van Lohuizen M. Context-dependent actions of polycomb repressors in cancer. Oncogene. 2016;35(11):1341–1352.
  • Ng D, Thakker N, Corcoran CM, et al. Oculofaciocardiodental and lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet. 2004;36(4):411–416.
  • Huynh KD, Fischle W, Verdin E, et al. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000;14(14):1810–1823.
  • Beguelin W, Teater M, Gearhart MD, et al. EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell. 2016;30(2):197–213.
  • Kotov JA, Kotov DI, Linehan JL, et al. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216(6):1450–1464.
  • Tara S, Isshiki Y, Nakajima-Takagi Y, et al. Bcor insufficiency promotes initiation and progression of myelodysplastic syndrome. Blood. 2018;132(23):2470–2483.
  • Sportoletti P, Sorcini D, Guzman AG, et al. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia. 2021;35(7):1949–1963.
  • Cao Q, Gearhart MD, Gery S, et al. BCOR regulates myeloid cell proliferation and differentiation. Leukemia. 2016;30(5):1155–1165.
  • Kelly MJ, So J, Rogers AJ, et al. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat Commun. 2019;10(1):1347.
  • Kaito S, Iwama A. Pathogenic impacts of dysregulated polycomb repressive complex function in hematological malignancies. IJMS. 2020;22(1):74.
  • Jallades L, Baseggio L, Sujobert P, et al. Exome sequencing identifies recurrent BCOR alterations and the absence of KLF2, TNFAIP3 and MYD88 mutations in splenic diffuse red pulp small B-cell lymphoma. Haematologica. 2017;102(10):1758–1766.
  • Maitre E, Bertrand P, Maingonnat C, et al. New generation sequencing of targeted genes in the classical and the variant form of hairy cell leukemia highlights mutations in epigenetic regulation genes. Oncotarget. 2018;9(48):28866–28876.
  • López C, Bergmann AK, Paul U, et al. Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia. Br J Haematol. 2016;173(2):265–273.
  • Weniger MA, Küppers R. Molecular biology of hodgkin lymphoma. Leukemia. 2021;35(4):968–981.
  • Kuppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Invest. 2012;122(10):3439–3447.
  • Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5(4):251–262.
  • Schneider M, Schneider S, Zuhlke-Jenisch R, et al. Alterations of the CD58 gene in classical hodgkin lymphoma. Genes Chromosomes Cancer. 2015;54(10):638–645.
  • Giefing M, Siebert R. FISH and FICTION in lymphoma research. Methods in Molecular Biology (Clifton, NJ). 2019;1956:249–267.
  • Gearhart MD, Corcoran CM, Wamstad JA, et al. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol. 2006;26(18):6880–6889.
  • Hamline MY, Corcoran CM, Wamstad JA, et al. OFCD syndrome and extraembryonic defects are revealed by conditional mutation of the polycomb-group repressive complex 1.1 (PRC1.1) gene BCOR. Dev Biol. 2020;468(1-2):110–132.
  • Schmitz R, Hansmann ML, Bohle V, et al. TNFAIP3 (A20) is a tumor suppressor gene in hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206(5):981–989.
  • Giefing M, Winoto-Morbach S, Sosna J, et al. Hodgkin-Reed-Sternberg cells in classical hodgkin lymphoma show alterations of genes encoding the NADPH oxidase complex and impaired reactive oxygen species synthesis capacity. PloS One. 2013;8(12):e84928.
  • Junco SE, Wang R, Gaipa JC, et al. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure. 2013;21(4):665–671.
  • Liu Y, Abdul Razak FR, Terpstra M, et al. The mutational landscape of hodgkin lymphoma cell lines determined by whole-exome sequencing. Leukemia. 2014;28(11):2248–2251.
  • Tiacci E, Doring C, Brune V, et al. Analyzing primary hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical hodgkin lymphoma. Blood. 2012;120(23):4609–4620.
  • Weniger MA, Tiacci E, Schneider S, et al. Human CD30+ B cells represent a unique subset related to hodgkin lymphoma cells. J Clin Invest. 2018;128(7):2996–3007.
  • Casola S, Cattoretti G, Uyttersprot N, et al. Tracking germinal center B cells expressing germ-line immunoglobulin gamma1 transcripts by conditional gene targeting. Proc Natl Acad Sci U S A. 2006;103(19):7396–7401.
  • Crouch EE, Li Z, Takizawa M, et al. Regulation of AID expression in the immune response. J Exp Med. 2007;204(5):1145–1156.
  • Pape KA, Taylor JJ, Maul RW, et al. Different B cell populations mediate early and late memory during an endogenous immune response. Science. 2011;331(6021):1203–1207.
  • Srinivas S, Watanabe T, Lin CS, et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001;1:4.
  • Glimelius I, Edstrom A, Amini RM, et al. IL-9 expression contributes to the cellular composition in hodgkin lymphoma. Eur J Haematol. 2006;76(4):278–283.
  • Brink AA, Oudejans JJ, van den Brule AJ, et al. Low p53 and high bcl-2 expression in Reed-Sternberg cells predicts poor clinical outcome for hodgkin's disease: involvement of apoptosis resistance? Modern pathology: an official journal of the United States and canadian academy of pathology. Inc. 1998;11(4):376–383.
  • Kim LH, Nadarajah VS, Peh SC, et al. Expression of bcl-2 family members and presence of Epstein-Barr virus in the regulation of cell growth and death in classical hodgkin's lymphoma. Histopathology. 2004;44(3):257–267.
  • Linke F, Harenberg M, Nietert MM, et al. Microenvironmental interactions between endothelial and lymphoma cells: a role for the canonical WNT pathway in hodgkin lymphoma. Leukemia. 2017;31(2):361–372.
  • Wang GG, Konze KD, Tao J. Polycomb genes, miRNA, and their deregulation in B-cell malignancies. Blood. 2015;125(8):1217–1225.
  • Sze CC, Shilatifard A. MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer. Cold Spring Harb Perspect Med. 2016;6(11):a026427.
  • Spina V, Bruscaggin A, Cuccaro A, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical hodgkin lymphoma. Blood. 2018;131(22):2413–2425.
  • Wienand K, Chapuy B, Stewart C, et al. Genomic analyses of flow-sorted hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv. 2019;3(23):4065–4080.
  • Lamprecht B, Walter K, Kreher S, et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 2010;16(5):571–579.
  • Janz M, Hummel M, Truss M, et al. Classical hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of hodgkin/Reed-Sternberg cells. Blood. 2006;107(6):2536–2539.
  • Xing S, Li F, Zeng Z, et al. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity. Nat Immunol. 2016;17(6):695–703.
  • Carbone A, Gloghini A, Gaidano G, et al. Expression status of BCL-6 and syndecan-1 identifies distinct histogenetic subtypes of hodgkin's disease. Blood. 1998;92(7):2220–2228.
  • Schwering I, Brauninger A, Klein U, et al. Loss of the B-lineage-specific gene expression program in hodgkin and Reed-Sternberg cells of hodgkin lymphoma. Blood. 2003;101(4):1505–1512.
  • Lefebure M, Tothill RW, Kruse E, et al. Genomic characterisation of Eμ-Myc mouse lymphomas identifies Bcor as a Myc co-operative tumour-suppressor gene . Nat Commun. 2017;8:14581.
  • Lollies A, Hartmann S, Schneider M, et al. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia. 2018;32(1):92–101.
  • Ushmorov A, Leithauser F, Sakk O, et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical hodgkin lymphoma. Blood. 2006;107(6):2493–2500.
  • Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941–d7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.