531
Views
1
CrossRef citations to date
0
Altmetric
Reviews

The role of BTK inhibitors on the tumor microenvironment in CLL

ORCID Icon &
Pages 2023-2032 | Received 11 Mar 2022, Accepted 01 Apr 2022, Published online: 23 Apr 2022

References

  • Redaelli A, Laskin BL, Stephens JM, et al. The clinical and epidemiological burden of chronic lymphocytic leukaemia. Eur J Cancer Care. 2004;13(3):279–287.
  • Cancer Research UK. 2015. Chronic lymphocytic leukaemia (CLL) statistics [online]. Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-cll.
  • Mato AR, Roeker LE, Lamanna N, et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134–1143.
  • Arruga F, Gyau BB, Iannello A, et al. Immune response dysfunction in chronic lymphocytic leukemia: dissecting molecular mechanisms and microenvironmental conditions. IJMS. 2020;21(5):1825.
  • Burger JA. Treatment of chronic lymphocytic leukemia. N Engl J Med. 2020;383(5):460–473.
  • Wiestner A. Targeting B-Cell receptor signaling for anticancer therapy: the Bruton's tyrosine kinase inhibitor ibrutinib induces impressive responses in B-cell malignancies. J Clin Oncol. 2013;31(1):128–130.
  • Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton's tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14(4):219–232.
  • Dreger P, Schetelig J, Andersen N, et al. Managing high-risk CLL during transition to a new treatment era: stem cell transplantation or novel agents? Blood. 2014;124(26):3841–3849.
  • Gribben JG, Riches JC. Immunotherapeutic strategies including transplantation: eradication of disease. Hematology Am Soc Hematol Educ Program. 2013;2013(1):151–157.
  • Ahn IE, Brown JR. Targeting Bruton’s tyrosine kinase in CLL. Front Immunol. 2021;12:687458.
  • Parmar S, Patel K, Pinilla-Ibarz J. Ibrutinib (imbruvica): a novel targeted therapy for chronic lymphocytic leukemia. P T Peer Review J Formulary Manag. 2014;39(7):483–519.
  • Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17(1).
  • Nih.gov. 2016. X-linked agammaglobulinemia | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program. Available from: https://rarediseases.info.nih.gov/diseases/1033/x-linked-agammaglobulinemia.
  • Thompson PA. Occupy BTK: the key to controlling CLL. Blood. 2020;136(1):4–6.
  • Schwartzberg PL, Finkelstein LD, Readinger JA. TEC-family kinases: regulators of T-helper-cell differentiation. Nat Rev Immunol. 2005;5(4):284–295.
  • Mhibik M, Wiestner A, Sun C. Harnessing the effects of BTKi on T cells for effective immunotherapy against CLL. IJMS. 2019;21(1):68.
  • Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–2549.
  • Wang Q, Pechersky Y, Sagawa S, et al. Structural mechanism for Bruton's tyrosine kinase activation at the cell membrane. Proc Natl Acad Sci USA. 2019;116(19):9390–9399.
  • Solman IG, Blum LK, Hoh HY, et al. Ibrutinib restores immune cell numbers and function in first-line and relapsed/refractory chronic lymphocytic leukemia. Leuk Res. 2020;97:106432.
  • Solman IG, Blum LK, Burger JA, et al. Impact of long-term ibrutinib treatment on circulating immune cells in previously untreated chronic lymphocytic leukemia. Leuk Res. 2021;102:106520.
  • Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: guardians or drivers of disease? Leukemia. 2020;34(8):2012–2024.
  • Long M, Beckwith K, Do P, et al. Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Investig. 2017;127(8):3052–3064.
  • Willinger T, Freeman T, Hasegawa H, et al. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immunol. 2005;175(9):5895–5903.
  • Vignali D, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–532.
  • Gorgun G, Holderried TA, Zahrieh D, et al. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest. 2005;115(7):1797–1805.
  • Correia RP, Silva F, Bacal NS, et al. Involvement of memory T-cells in the pathophysiology of chronic lymphocytic leukemia. Rev Bras Hematol Hemoter. 2014;36(1):60–64.
  • Davis JE, Sharpe C, Mason K, et al. Ibrutinib protects T cells in patients with CLL from proliferation-induced senescence. J Transl Med. 2021;19(1).
  • Hansson H, Mattsson PT, Allard P, et al. Solution structure of the SH3 domain from Bruton's tyrosine kinase. Biochemistry. 1998;37(9):2912–2924.
  • Zhong Y, Johnson AJ, Byrd JC, et al. Targeting interleukin-2-inducible T-cell kinase (ITK) in T-Cell related diseases. PDJ. 2014;2(6):1–11.
  • Herman S, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–6296.
  • D'Arena G, Simeon V, D'Auria F, et al. Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander? Am J Blood Res. 2013;3(1):52–57. 2022.
  • Piper KP, Karanth M, McLarnon A, et al. Chronic lymphocytic leukaemia cells drive the global CD4+ T cell repertoire towards a regulatory phenotype and leads to the accumulation of CD4+ forkhead box P3+ T cells. Clin Exp Immunol. 2011;166(2):154–163.
  • Gomez-Rodriguez J, Wohlfert EA, Handon R, et al. Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells. J Exp Med. 2014;211(3):529–543.
  • Baptista MJ, Baskar S, Gaglione EM, et al. Select antitumor cytotoxic CD8. + T clonotypes expand in patients with chronic lymphocytic leukemia treated with ibrutinib. Clin Cancer Res 2021;27(16):4624–4633.
  • Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.
  • Brusa D, Serra S, Coscia M, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–963.
  • McClanahan F, Hanna B, Miller S, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126(2):203–211.
  • Hanna BS, McClanahan F, Yazdanparast H, et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia. 2016;30(3):570–579.
  • Catakovic K, Gassner FJ, Ratswohl C, et al. TIGIT expressing CD4 + T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncoimmunology. 2018;7(1):e1371399.
  • Palma M, Mulder TA, Österborg A. BTK inhibitors in chronic lymphocytic leukemia: biological activity and immune effects. Front Immunol. 2021;12:686768.
  • Brassart-Pasco S, Brézillon S, Brassart B, et al. Tumor microenvironment: extracellular matrix alterations influence tumor progression. Front Oncol. 2020;10:10.
  • Messex JK, Liou G-Y. Targeting BTK signaling in the microenvironment of solid tumors as a feasible cancer therapy option. Cancers. 2021;13(9):2198.
  • Stiff A, Trikha P, Wesolowski R, et al. Myeloid-derived suppressor cells express Bruton's tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treatment. Cancer Res. 2016;76(8):2125–2136.
  • Roghanian A. 2016. Dendritic Cells | British Society for Immunology [online]. Immunology.org. Available from: https://www.immunology.org/public-information/bitesized-immunology/cells/dendritic-cells
  • Kawakami Y, Inagaki N, Salek-Ardakani S, et al. Regulation of dendritic cell maturation and function by Bruton’s tyrosine kinase via IL-10 and Stat3. Proc Natl Acad Sci USA. 2006;103(1):153–158.
  • Natarajan G, Oghumu S, Terrazas C, et al. A tec kinase BTK inhibitor ibrutinib promotes maturation and activation of dendritic cells. OncoImmunology. 2016;5(6):e1151592.
  • Petty AJ, Yang Y. Tumor-associated macrophages in hematologic malignancies: new insights and targeted therapies. Cells. 2019;8(12):1526.
  • Wang H, Yung M, Ngan H, et al. The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression. IJMS. 2021;22(12):6560.
  • Colado A, Genoula M, Cougoule C, et al. Effect of the BTK inhibitor ibrutinib on macrophage- and γδ T cell-mediated response against Mycobacterium tuberculosis. Blood Cancer J. 2018;8(11):1–6.
  • Amoras A, da Silva M, Zollner RL, et al. Expression of fcγ and complement receptors in monocytes of X-linked agammaglobulinaemia and common variable immunodeficiency patients. Clin Exp Immunol 2007;150(3):422–428.
  • Ren L, Campbell A, Fang H, et al. Analysis of the effects of the Bruton’s tyrosine kinase (btk) inhibitor ibrutinib on monocyte fcγ receptor (FcγR) function *. J Biol Chem. 2016;291(6):3043–3052.
  • Wang L, Zheng G. Macrophages in leukemia microenvironment. Blood Sci. 2019;1(1):29–33.
  • Qiu Q, Li C, Song Y, et al. Targeted delivery of ibrutinib to tumor-associated macrophages by sialic acid-stearic acid conjugate modified nanocomplexes for cancer immunotherapy. Acta Biomater 2019;92:184–195.
  • Pleyer C, Sun CC, Niermann P, et al. Partial reconstitution of humoral and cellular immunity in patients with chronic lymphocytic leukemia treated with acalabrutinib. Blood. 2018;132(Supplement 1):1874–1874.
  • Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–682.
  • Staversky RJ, Byun DK, Georger MA, et al. The chemokine CCL3 regulates myeloid differentiation and hematopoietic stem cell numbers. Sci Rep. 2018;8(1):14691.
  • Liu Z, Liu J, Zhang T, et al. Distinct BTK inhibitors differentially induce apoptosis but similarly suppress chemotaxis and lipid accumulation in mantle cell lymphoma. BMC Cancer. 2021;21(1):30–32.
  • Romero-Toledo A, Sanderson R, Gribben JG. Treatment with acalibrutinib, ibrutinib and CD19 CAR T cells restore the number of granulocytic myeloid derived supressor cells in CLL-bearing mice. Blood. 2019;134(Supplement_1):3032–3032.
  • Gauthier J, Hirayama AV, Purushe J, et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood. 2020;135(19):1650–1660. pp.
  • Fred Hutchinson Cancer Research Center and National Cancer Institute (NCI). 2021. Phase I/II study of immunotherapy for advanced CD19+ chronic lymphocytic leukemia, acute lymphoblastic leukemia/lymphoma and non-hodgkin lymphoma with defined subsets of autologous T cells engineered to express a CD19-specific chimeric antigen receptor [online]. clinicaltrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT01865617
  • Siddiqi T. 2020. Updated follow-up of patients with relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma treated with lisocabtagene maraleucel in the phase 1 monotherapy cohort of transcend CLL 004, including high-risk and ibrutinib-treated patients. [online] ash.confex.com. Available from: https://ash.confex.com/ash/2020/webprogram/Paper140491.html
  • Wierda W. 2020. Transcend CLL 004: Phase 1 cohort of lisocabtagene maraleucel (liso-cel) in combination with ibrutinib for patients with relapsed/refractory (r/r) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). ash.confex.com. Available from: https://ash.confex.com/ash/2020/webprogram/Paper140622.html
  • Robinson HR, Qi J, Cook EM, et al. A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era. Blood. 2018;132(5):521–532.
  • Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137(23):3165–3173.
  • Niemann CU, Dubois J, Brieghel C, et al. Time-Limited venetoclax and ibrutinib for patients with relapsed/refractory chronic lymphocytic leukemia (R/R CLL) who have undetectable MRD - Primary analysis from the randomized phase II vision HO141 trial. Blood. 2021;138(Supplement 1):69–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.