354
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

CD69 marks a subpopulation of acute myeloid leukemia with enhanced colony forming capacity and a unique signaling activation state

, , , , , , , & show all
Pages 1262-1274 | Received 07 Sep 2022, Accepted 09 Apr 2023, Published online: 10 May 2023

References

  • Khwaja A, Bjorkholm M, Gale RE, et al. Acute myeloid leukaemia. Nat Rev Dis Primers. 2016; 2:16010.
  • Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017; 129(12):1577–1585.
  • Sarkozy C, Gardin C, Gachard N, et al. Outcome of older patients with acute myeloid leukemia in first relapse. Am J Hematol. 2013; 88(9):758–764.
  • Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015; 373(12):1136–1152.
  • Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447.
  • Dick JE. Acute myeloid leukemia stem cells. Ann N Y Acad Sci. 2005; 1044:1–5.
  • Shlush LI, Mitchell A, Heisler L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547(7661):104–108.
  • Testa U. Leukemia stem cells. Ann Hematol. 2011; 90(3):245–271.
  • Behbehani GS, Bjornson ZB, Fantl WJ, et al. Cytometric functional profiling of acute myeloid leukemia defines cell-cycle and immunophenotypic properties that correlate with known responses to therapy. Cancer Discov. 2015;5(9):988–1003.
  • Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004; 5(7):738–743.
  • Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer. 2019; 58(12):850–858.
  • Rodrigues A, Costa RGA, Silva SLR, et al. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol. 2021;160:103277.
  • Li Q, Bohin N, Wen T, et al. Oncogenic nras has bimodal effects on stem cells that sustainably increase competitiveness. Nature. 2013;504(7478):143–147.
  • Sachs Z, LaRue RS, Nguyen HT, et al. NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia. Blood. 2014;124(22):3274–3283.
  • Sachs K, Sarver AL, Noble-Orcutt KE, et al. Single-cell gene expression analyses reveal distinct self-renewing and proliferating subsets in the leukemia stem cell compartment in acute myeloid leukemia. Cancer Res. 2020;80(3):458–470.
  • Kurata M, Antony ML, Noble-Orcutt KE, et al. Proliferation and self-renewal are differentially sensitive to NRASG12V oncogene levels in an acute myeloid leukemia cell line. Mol Cancer Res. 2022;20(11):1646–1658.
  • Kim WI, Matise I, Diers MD, et al. RAS oncogene suppression induces apoptosis followed by more differentiated and less myelosuppressive disease upon relapse of acute myeloid leukemia. Blood. 2009;113(5):1086–1096.
  • Sachs Z, Been RA, DeCoursin KJ, et al. Stat5 is critical for the development and maintenance of myeloproliferative neoplasm initiated by Nf1 deficiency. Haematologica. 2016;101(10):1190–1199.
  • Kempema AM, Widen JC, Hexum JK, et al. Synthesis and antileukemic activities of C1-C10-modified parthenolide analogues. Bioorg Med Chem. 2015;23(15):4737–4745.
  • Baughn LB, Sachs Z, Noble-Orcutt KE, et al. Phenotypic and functional characterization of a bortezomib-resistant multiple myeloma cell line by flow and mass cytometry. Leuk Lymphoma. 2017;58(8):1931–1940.
  • Scutari M. Learning bayesian networks with the bnlearn R package. J Stat Soft. 2010;35(3):1-22, Accession Number: WOS:000281587200001. DOI: 10.18637/jss.v035.i03.
  • Selman B, Gomes CP. “Hill-climbing search” in Encyclopedia of Cognitive Science, Hoboken, NJ, USA: Wiley, 2006, [online] Available: https://onlinelibrary.wiley.com/
  • Amir el AD, Davis KL, Tadmor MD, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545–552.
  • Khan AQ, Kuttikrishnan S, Siveen KS, et al. RAS-mediated oncogenic signaling pathways in human malignancies. Semin Cancer Biol. 2019; 54:1–13.
  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011; 11(11):761–774.
  • Zhang JR, Du J, Liu Y, et al. Deficiency of β common receptor moderately attenuates the progression of myeloproliferative neoplasm in NrasG12D/+ mice. J Biol Chem. 2015;290(31):19093–19103.
  • Sachs K, Po Pe’er D, Lauffenburger DA, et al. Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005;19(309): 5738.
  • Bosman MC, Schuringa JJ, Vellenga E. Constitutive NF-kappaB activation in AML: causes and treatment strategies [review]. Crit Rev Oncol Hematol. 2016; 98:35–44.
  • Achanta G, Huang P. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 2004;164(17):6233–6239.
  • Bosman MC, Schuringa JJ, Quax WJ, et al. Bortezomib sensitivity of acute myeloid leukemia CD34(+) cells can be enhanced by targeting the persisting activity of NF-kappaB and the accumulation of MCL-1. Exp Hematol. 2013;41(6):530–538 e1.
  • van der Helm LH, Bosman MC, Schuringa JJ, et al. Effective targeting of primitive AML CD34+ cells by the second-generation proteasome inhibitor carfilzomib. Br J Haematol. 2015;171(4):652–655.
  • Csizmar CM, Kim DH, Sachs Z. The role of the proteasome in AML. Blood Cancer J. 2016; Dec 26(12):e503.
  • Sin CF, Man PM. The role of proteasome inhibitors in treating acute lymphoblastic leukaemia. Front Oncol. 2021;11:802832.
  • Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, et al. Carfilzomib: a promising proteasome inhibitor for the treatment of relapsed and refractory multiple myeloma. Front Oncol. 2021;11:740796.
  • McBride A, Klaus JO, Stockerl-Goldstein K. Carfilzomib: a second-generation proteasome inhibitor for the treatment of multiple myeloma. Am J Health Syst Pharm. 2015; Mar 172(5):353–360.
  • Muchamuel T, Basler M, Aujay MA, et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med. 2009;15(7):781–787.
  • Liu H, Wan C, Ding Y, et al. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing T(h)17-cell differentiation and regulating cytokine production. Faseb J. 2017;31(4):1756–1766.
  • Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009; 138(2):271–285.
  • Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009; 138(2):286–299.
  • Kersten B, Valkering M, Wouters R, et al. CD45RA, a specific marker for leukaemia stem cell Sub-populations in acute myeloid leukaemia. Br J Haematol. 2016;173(2):219–235.
  • Chung SS, Eng WS, Hu W, et al. CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Sci Transl Med. 2017; 9(374): eaaj2025.
  • Lagadinou ED, Sach A, Callahan K, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013; 12(3):329–341.
  • Duy C, Li M, Teater M, et al. Chemotherapy induces Senescence-Like resilient cells capable of initiating AML recurrence. Cancer Discov. 2021;11(6):1542–1561.
  • Guo G, Luc S, Marco E, et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell. 2013;13(4):492–505.
  • Meyer SE, Qin T, Muench DE, et al. DNMT3A haploinsufficiency transforms FLT3ITD myeloproliferative disease into a rapid, spontaneous, and fully penetrant acute myeloid leukemia. Cancer Discov. 2016; 6(5):501–515.
  • Ng SW, Mitchell A, Kennedy JA, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433–437.
  • Kagoya Y, Yoshimi A, Kataoka K, et al. Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity. J Clin Invest. 2014;124(2):528–542.
  • Wang SY, Shih YH, Shieh TM, et al. Proteasome inhibitors interrupt the activation of Non-Canonical NF-kappaB signaling pathway and induce cell apoptosis in Cytarabine-Resistant HL60 cells. Int J Mol Sci. 2021;23(1): 361.
  • Zhu S, Liu J, Kang R, et al. Targeting NF-kappaB-dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochem Biophys Res Commun. 2021; 562:55–61.
  • Cheng JH, Zhang WJ, Zhu JF, et al. CaMKIIgamma regulates the viability and self-renewal of acute myeloid leukaemia stem-like cells by the Alox5/NF-kappaB pathway. Int J Lab Hematol. 2021;43(4):699–706.
  • Guzman MN, Upchurch D, Grimes B, et al. Nuclear factor-kB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98(8):2301–2307.
  • Birkenkamp KU, Geugien M, Schepers H, et al. Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia. 2004;18(1):103–112.
  • Zhang YD, Wang X, Wang X, et al. MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Rep. 2021;37(5):109949.
  • Schwermann JR, Schubert M, Schumacher S, et al. MAPKAP kinase MK2 maintains self-renewal capacity of haematopoietic stem cells. Embo J. 2009;28(10):1392–1406.
  • Li ML, Liu Y, Yang L, et al. Downregulation of GNA15 inhibits cell proliferation via P38 MAPK pathway and correlates with prognosis of adult acute myeloid leukemia with normal karyotype. Front Oncol. 2021;11:1-12, Article 724435.
  • Matou-Nasri S, Najdi M, AlSaud NA, et al. Blockade of p38 MAPK overcomes AML stem cell line KG1a resistance to 5-Fluorouridine and the impact on miRNA profiling. PLoS One. 2022;17(5):e0267855.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.