181
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Mutational landscape in Waldenström macroglobulinemia evaluated using a next-generation sequencing lymphoma panel in routine clinical practice

, , , , , , , , & ORCID Icon show all
Pages 758-767 | Received 26 Jun 2023, Accepted 29 Jan 2024, Published online: 10 Feb 2024

References

  • Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the second international workshop on Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30(2):110–115. doi:10.1053/sonc.2003.50082
  • Hunter ZR, Xu L, Yang G, et al. The genomic landscape of waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–1646. doi:10.1182/blood-2013-09-525808
  • Kaiser LM, Hunter ZR, Treon SP, et al. CXCR4 in waldenström’s macroglobulinema: chances and challenges. Leukemia. 2021;35(2):333–345. doi:10.1038/s41375-020-01102-3
  • Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in waldenström’s macroglobulinemia. N Engl J Med. 2012;367(9):826–833. doi:10.1056/NEJMoa1200710
  • García-Sanz R, Dogliotti I, Zaccaria GM, et al. 6q deletion in waldenström macroglobulinaemia negatively affects time to transformation and survival. Br J Haematol. 2021;192(5):843–852. doi:10.1111/bjh.17028
  • Jiménez C, Prieto-Conde MI, García-Álvarez M, et al. Unraveling the heterogeneity of IgM monoclonal gammopathies: a gene mutational and gene expression study. Ann Hematol. 2018;97(3):475–484. doi:10.1007/s00277-017-3207-3
  • Jiménez C, Alonso-Álvarez S, Alcoceba M, et al. From Waldenström’s macroglobulinemia to aggressive diffuse large B-cell lymphoma: a whole-exome analysis of abnormalities leading to transformation. Blood Cancer J. 2017;7(8):e591–e591. doi:10.1038/bcj.2017.72
  • Garcia-Sanz R, Varettoni M, Jiménez C, et al. Report of consensus panel 3 from the 11th international workshop on Waldenström’s macroglobulinemia: recommendations for molecular diagnosis in Waldenström’s macroglobulinemia. Semin Hematol. 2023;60(2):90–96. doi:10.1053/j.seminhematol.2023.03.007
  • Dogliotti I, Jiménez C, Varettoni M, et al. Diagnostics in waldenström’s macroglobulinemia: a consensus statement of the european consortium for waldenström’s macroglobulinemia. Leukemia. 2023;37(2):388–395. doi:10.1038/s41375-022-01762-3
  • Drandi D, Genuardi E, Dogliotti I, et al. Highly sensitive MYD88L265P mutation detection by droplet digital polymerase chain reaction in waldenström macroglobulinemia. Haematologica. 2018;103(6):1029–1037. doi:10.3324/haematol.2017.186528
  • Ferrante M, Furlan D, Zibellini S, et al. MYD88L265P detection in IgM monoclonal gammopathies: methodological considerations for routine implementation. Diagnostics (Basel). 2021;11(5):779. doi:10.3390/diagnostics11050779
  • Treon SP, Cao Y, Xu L, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791–2796. doi:10.1182/blood-2014-01-550905
  • Hunter ZR, Xu L, Tsakmaklis N, et al. Insights into the genomic landscape of MYD88 wild-type waldenström macroglobulinemia. Blood Adv. 2018;2(21):2937–2946. doi:10.1182/bloodadvances.2018022962
  • Rossi D, Ciardullo C, Gaidano G. Genetic aberrations of signaling pathways in lymphomagenesis: revelations from next generation sequencing studies. Semin Cancer Biol. 2013;23(6):422–430. doi:10.1016/j.semcancer.2013.04.002
  • de Leval L, Alizadeh AA, Bergsagel PL, et al. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood. 2022;140(21):2193–2227. doi:10.1182/blood.2022015854
  • Breinholt MF, Schejbel L, Gang AO, et al. Next generation sequencing in routine diagnostics of mature non-Hodgkin’s B-cell lymphomas. Eur J Haematol. 2023;111(4):583–591. doi:10.1111/ejh.14048
  • Garcia-Reyero J, Magunacelaya NM, de Villambrosia SG, et al. Diagnostic value of bone marrow core biopsy patterns in lymphoplasmacytic lymphoma/waldenström macroglobulinaemia and description of its mutational profiles by targeted NGS. J Clin Pathol. 2020;73(9):571–577. doi:10.1136/jclinpath-2019-206282
  • Pillonel V, Juskevicius D, Bihl M, et al. Routine next generation sequencing of lymphoid malignancies: clinical utility and challenges from a 3-Year practical experience. Leuk Lymphoma. 2020;61(11):2568–2583. doi:10.1080/10428194.2020.1786560
  • Jajosky AN, Havens NP, Sadri N, et al. Clinical utility of targeted next-generation sequencing in the evaluation of low-grade lymphoproliferative disorders. Am J Clin Pathol. 2021;156(3):433–444. doi:10.1093/ajcp/aqaa255
  • Kofides A, Hunter ZR, Xu L, et al. Diagnostic next-generation sequencing frequently fails to detect MYD88L265P in waldenström macroglobulinemia. Hemasphere. 2021;5(8):e624. doi:10.1097/HS9.0000000000000624
  • Schejbel L, Breinholt MF, Gang AO, et al. Inactivating BTK mutations in large B-cell lymphoma in a real-world cohort: strong correlation with BCL2 translocation. EJHaem. 2022;3(3):936–939. doi:10.1002/jha2.489
  • Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: International Agency for Research on Cancer; 2017.
  • Hersby DS, Schejbel L, Breinholt MF, et al. Multi-site pre-therapeutic biopsies demonstrate genetic heterogeneity in patients with newly diagnosed diffuse large B-cell lymphoma. Leuk Lymphoma. 2023;64(9):1527–1535. doi:10.1080/10428194.2023.2220454
  • Schejbel L, Novotny GW, Breinholt MF, et al. Improved variant detection in clinical myeloid NGS testing by supplementing a commercial myeloid NGS assay with custom or extended data filtering and accessory fragment analysis. Mol Diagn Ther. 2021;25(2):251–266. doi:10.1007/s40291-021-00519-5
  • Li MM, Datto M, Duncavage EJ, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American society of clinical oncology, and college of American pathologists. J Mol Diagn. 2017;19(1):4–23. doi:10.1016/j.jmoldx.2016.10.002
  • Kopanos C, Tsiolkas V, Kouris A, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35(11):1978–1980. doi:10.1093/bioinformatics/bty897
  • Bouaoun L, Sonkin D, Ardin M, et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat. 2016;37(9):865–876. doi:10.1002/humu.23035
  • Treon SP, Xu L, Guerrera ML, et al. Genomic landscape of waldenström macroglobulinemia and its impact on treatment strategies. J Clin Oncol. 2020;38(11):1198–1208. doi:10.1200/JCO.19.02314
  • Poulain S, Roumier C, Bertrand E, et al. TP53 mutation and its prognostic significance in Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2017;23(20):6325–6335. doi:10.1158/1078-0432.CCR-17-0007
  • Poulain S, Roumier C, Decambron A, et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood. 2013;121(22):4504–4511. doi:10.1182/blood-2012-06-436329
  • Varettoni M, Arcaini L, Zibellini S, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013;121(13):2522–2528. doi:10.1182/blood-2012-09-457101
  • Varettoni M, Zibellini S, Defrancesco I, et al. Pattern of somatic mutations in patients with waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance. Haematologica. 2017;102(12):2077–2085. doi:10.3324/haematol.2017.172718
  • Krzisch D, Guedes N, Boccon-Gibod C, et al. Cytogenetic and molecular abnormalities in Waldenström’s macroglobulinemia patients: correlations and prognostic impact. Am J Hematol. 2021;96(12):1569–1579. doi:10.1002/ajh.26339
  • Kastritis E, Leblond V, Dimopoulos MA, et al. Waldenström’s macroglobulinaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(4):iv41–iv50. doi:10.1093/annonc/mdy146
  • Wang Y, Gali VL, Xu-Monette ZY, et al. Molecular and genetic biomarkers implemented from next-generation sequencing provide treatment insights in clinical practice for waldenström macroglobulinemia. Neoplasia. 2021;23(4):361–374. doi:10.1016/j.neo.2021.02.002
  • Asslaber D, Wacht N, Leisch M, et al. BIRC3 expression predicts CLL progression and defines treatment sensitivity via enhanced NF-κB nuclear translocation. Clin Cancer Res. 2019;25(6):1901–1912. doi:10.1158/1078-0432.CCR-18-1548
  • Diop F, Moia R, Favini C, et al. Biological and clinical implications of BIRC3 mutations in chronic lymphocytic leukemia. Haematologica. 2020;105(2):448–456. doi: 10.3324/haematol.2019.219550
  • Xu P, Liu X, Ouyang J, et al. TP53 mutation predicts the poor prognosis of non-Hodgkin lymphomas: Evidence from a meta-analysis. PLoS One. 2017;12(4):e0174809. doi:10.1371/journal.pone.0174809
  • Liu X, Chen JG, Munshi M, et al. Expression of the prosurvival kinase HCK requires PAX5 and mutated MYD88 signaling in MYD88-driven B-cell lymphomas. Blood Adv. 2020;4(1):141–153. doi:10.1182/bloodadvances.2019000947
  • Hamadou WS, Bourdon V, Létard S, et al. Familial hematological malignancies: new IDH2 mutation. Ann Hematol. 2016;95(12):1943–1947. doi:10.1007/s00277-016-2813-9
  • Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–2498. doi: 10.1056/NEJMoa1408617
  • Chen X, Xing H, Xie X, et al. Efficacy and safety of FDA-approved IDH inhibitors in the treatment of IDH mutated acute myeloid leukemia: a systematic review and meta-analysis. Clin Epigenetics. 2023;15(1):113. doi:10.1186/s13148-023-01529-2
  • Gustine JN, Xu L, Yang G, et al. Bone marrow involvement and subclonal diversity impairs detection of mutated CXCR4 by diagnostic next-generation sequencing in waldenström macroglobulinaemia. Br J Haematol. 2021;194(4):730–733. doi:10.1111/bjh.17385

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.