574
Views
10
CrossRef citations to date
0
Altmetric
Articles

Amphitheater Layout with Egocentric Distance-Based Item Sizing and Landmarks for Browsing in Virtual Reality

, , & ORCID Icon

References

  • Argelaguet, F., & Andujar, C. (2013). A survey of 3D object selection techniques for virtual environments. Computers & Graphics, 37(3), 121–136. doi:10.1016/j.cag.2012.12.003
  • Bennett, A., Coxon, M., & Mania, K., (2010). The effect of stereo and context on memory and awareness states in immersive virtual environments, APGV ’10 (Proceeding of 7th Symposium on Applied Perception in Graphics and Visualization), Los Angeles, USA, pp. 135–140. doi:10.1177/1753193410384696
  • Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends Cognition Sciences. doi:10.1016/j.tics.2006.10.005
  • Collins, C., Penn, G., & Carpendale, M. S. T. (2009). Bubble sets: Revealing set relations with isocontours over existing visualizations. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1009–1016. doi:10.1109/TVCG.2009.122
  • Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In W. Epstein & S. J. Rogers (Eds.), Handbook of perception and cognition, Vol 5; Perception of space and motion (pp. 69–117). San Diego, CA: Academic Press.
  • Ens, B., Ofek, E., Bruce, N., & Irani, P. (2015). Spatial constancy of surface-embedded layouts across multiple environments (pp. 65–68). Los Angeles, CA: SUI 15, ACM.
  • Ens, B. M., Finnegan, R., & Irani, P. P. (2014). The personal cockpit: A spatial interface for effective task switching on head-worn displays. CHI, 14(ACM), Toronto, Canada, 3171–3180.
  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.
  • Gao, B., Kim, H., Kim, B., & Kim, J., (2018). Artificial landmarks to facilitate spatial learning and recalling for the curved visual wall layout in virtual reality, IEEE BigComp 2018, Shanghai, China, regular paper, 475–482.
  • Geng, J. (2013). Three-dimensional display technologies. Adv Opt Photonics, 5(4), 456–535. doi:10.1364/AOP.5.000456
  • Ghani, S., & Elmqvist, N. (2011). Improving revisitation in graphs through static spatial features. Proceedings of Graphics Interface (GI 2011), Newfoundland, Canada, 175–182.
  • Havre, S., Hetzler, E., Whitney, P., & Nowell, L. (2002). ThemeRiver: Visualizing thematic changes in large document collections. IEEE Transactions on Visualization and Computer Graphics, 8(1), 9–20. doi:10.1109/2945.981848
  • HTC Vive. Retrieved August 20, 2017, from https://www.vive.com/eu/
  • Item sets. Retrieved June 20, 2017, from http://www.iconsdb.com/gray-icons/
  • Janzen, I., Rajendran, V. K., & Booth, K. S. (2016). The impact of target depth on pointing performance, CHI ’16 (pp. 188–199). San Jose, CA: ACM Press.
  • Johnson, B., & Shneiderman, B. (1991). Space-filling approach to the visualization of hierarchical information structures. IEEE Visualization, 91, 284–291.
  • Kenyon, R. V., Phenany, M., Sandin, D., & Defanti, T. (2007a). Accommodation and size-constancy of virtual objects. Annals Biomedical Engineering, 36(2), 342–348. doi:10.1007/s10439-007-9414-7
  • Khanwalker, S., Balakrishna, S., & Jain, R. (2016). Exploration of large image corpuses in virtual reality (pp. 596–600). Amsterdam, The Netherlands: MM 16, ACM.
  • Knapp, J. M., & Loomis, J. M. (2004). Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence: Teleoperators and Virtual Environments, 13(5), 572–577. doi:10.1162/1054746042545238
  • Kooper, R., & Maclntyre, B. (2003). Browsing the real-world wide web: Maintaining awareness of virtual information in an AR information space. International Journal of Human-Computer Interaction, 16(3), 425–446. doi:10.1207/S15327590IJHC1603_3
  • Kuhl, S. A., Thompson, W. B., & Creem-Regehr, S. H. (2009). HMD calibration and its effects on distance judgments. ACM Transactions Applications Percpt, 6(3), Article 19, 20.
  • Leyrer, M., Linkenauger, S. A., Bulthoff, H. H., & Mohler, B. J. (2015). Eye height manipulations: A possible ¨ solution to reduce underestimation of egocentric distances in head-mounted displays. ACM Transactions Applications Percept, 12(1), Article 1, 23. doi:10.1145/2699254
  • Loomis, J. M., & Philbeck, J. W. (2008). Measuring spatial perception with spatial updating and action. In M. Behrmann, R. L. Klatzky, & B. Macwhinney (Eds.), Embodiment, ego-space, and action (pp. 1–43). New York, United States: Psychology Press.
  • Loup-Escande, E., Jamet, E., Ragot, M., Erhel, S., & Michinov, N. (2017). Effects of stereoscopic display on learning and user experience in an educational virtual environment. International Journal of Human-Computer Interaction, 33(2), 115–122.
  • Mania, K., Badariah, S., Coxon, M., & Watten, P. (2010). Cognitive transfer of spatial awareness states from immersive virtual environments to reality. ACM Transactions Applications Percept, 7(2), 9:1–9:14. doi:10.1145/1670671.1670673
  • Mania, K., Wooldridge, D., Coxon, M., & Robinson, A. (2006). The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments. IEEE Transactions on Visualization and Computer Graphics, 12(3), 396–404. doi:10.1109/TVCG.2006.55
  • Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 162–170.
  • Murata, A., & Iwase, H. (2001). Extending Fitts’ law to a three-dimensional pointing task. Human Movement Science, 20(6), 791–805.
  • Oculus Rift. Retrieved August 20, 2017, from https://www.oculus.com/rift/
  • Peng, C., Hansberger, J. T., Cao, L., & Shanthakumar, V. A. (2017). Hand gesture controls for image categorization in immersive virtual environments, Virtual Reality (VR) 17, IEEE (pp. 331–332). Los Angeles, CA.
  • Ragan, E. D., Bowman, D. A., Kopper, R., Stinson, C., Scerbo, S., & McMahan, R. P. (2015). Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE Transactions on Visualization and Computer Graphics, 21(7), 794–807. doi:10.1109/TVCG.2015.2403312
  • Ragan, E. D., Kopper, R., Schuchardt, P., & Bowman, D. A. (2013). Studying the effects of stereo, head tracking, and field of regard on a small-scale spatial judgment task. IEEE Transactions on Visualization and Computer Graphics, 19(5), 886–896. doi:10.1109/TVCG.2012.163
  • Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The perception of egocentric distances in virtual environments – A review. ACM Computation Survey, 46(2), Article 23, 40. doi:10.1145/2543581.2543590
  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory and Cognition, 27(4), 741–750.
  • Rosen, S., Chakravarthi, R., & Pelli, D. G. (2014). The Bouma law of crowding, revised: Critical spacing is equal across parts, not objects. Journal of Vision, 14(6), 10, 1–15. doi:10.1167/14.13.11
  • Sassi, A., Poyhonen, P., Jakonen, S., Soumi, S., Capin, T., & Hakkinen, J. (2014). Enhanced user performance in an image gallery application with a mobile autostereoscopic touch display. Journal of Displays, 35(3), 152–158. doi:10.1016/j.displa.2014.05.003
  • Scarr, J., Cockburn, A., & Gutwin, C. (2012). Supporting and exploiting spatial memory in user interfaces. Foundations and Trends® in Human–Computer Interaction, 6(1), 1–84. doi:10.1561/1100000046
  • Scarr, J., Cockburn, A., Gutwin, C., & Bunt, A. (2012). Improving command selection with CommandMaps. CHI’12, ACM (pp. 257–266). Austin, TX.
  • Scarr, J., Cockburn, A., Gutwin, C., & Malacria, S. (2013). Testing the robustness and performance of spatially consistent interfaces (Vol. 2013, pp. 3139–3148). Paris, France: CHI 13, ACM.
  • Shupp, L., Ball, R., Yost, B., Booker, J., & North, C. (2006). Evaluation of viewport size and curvature of large, high-resolution displays. Proceedings of Graphics Interface (GI 2006), Quebec City, Canada, 123–130.
  • Sun, H. M., & Gordon, R. D. (2010). The influence of location and visual features on visual object memory. Memory & Cognition, 38(8), 1049–1057. doi:10.3758/MC.38.8.1049
  • Teo, T., Norman, M., Adcock, M., & Thomas, B. H. (2017). Data fragment: Virtual reality for viewing and querying large image sets, Virtual Reality (VR) 17, IEEE, Los Angeles, CA, 327–328.
  • Uddin, M. S., Gutwin, C., & Cockburn, A. (2017). The effects of artificial landmarks on learning and performance in spatial-memory interfaces (Vol. 2017, pp. 3843–3855). Denver, Colorado, CA: CHI 17, ACM.
  • Uddin, M. S., Gutwin, C., & Lafreniere, B. (2016). HandMark Menus: Rapid command selection and large command sets on multi-touch displays (pp. 5836–5848). CHI ’16, ACM Press.
  • VRTK. Retrieved August 20, 2017, from https://vrtoolkit.readme.io/docs
  • Vurro, M., Ling, Y., & Hurlbert, A. C. (2013). Memory color of natural familiar objects: Effects of surface texture and 3D shape. Journal of Vision, 13, 20. doi:10.1167/13.7.20
  • Waller, D., Hunt, E., & Knapp, D. (1998). The transfer of spatial knowledge in virtual environment training. Presence: Teleoperators and Virtual Environments, 7(2), 129–143. doi:10.1162/105474698565631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.