4,035
Views
68
CrossRef citations to date
0
Altmetric
Survey Article

Brain–Computer Interface Games Based on Consumer-Grade EEG Devices: A Systematic Literature Review

ORCID Icon & ORCID Icon

References

  • Abdessalem, H. B., & Frasson, C. (2017). Real-time brain assessment for adaptive virtual reality game: A neurofeedback approach. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol.10512, pp. 133–143). Patras, Greece: LNAI. doi:10.1007/978-3-319-67615-9_12
  • Adams, E. (2009). The designer’s notebook: Sorting out the genre muddle. Retrieved from http://www.gamasutra.com/view/feature/132463/the_designers_notebook_sorting_.php?page=4
  • Adams, E. (2010). Fundamentals of game design (1st ed.). Indianapolis, IN, USA: New Riders Pub.
  • Ahn, M., Lee, M., Choi, J., & Jun, S. C. (2014). A review of brain-computer interface games and an opinion survey from researchers, developers and users. Sensors, 14(8), 14601–14633. doi:10.3390/s140814601
  • Ahn, S., Kim, K., & Jun, S. C. (2016). Steady-state somatosensory evoked potential for brain-computer interface—present and future. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00716
  • Alchalabi, A. E., Eddin, A. N., & Shirmohammadi, S. (2017a). More attention, less deficit: Wearable EEG-based serious game for focus improvement. In 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH) (pp. 1–8). Perth, Australia: IEEE. doi:10.1109/SeGAH.2017.7939288
  • Alchalabi, A. E., Shirmohammadi, S., Eddin, A. N., & Elsharnouby, M. (2018). FOCUS: detecting ADHD patients by an EEG-based serious game. IEEE Transactions on Instrumentation and Measurement, 67(7), 1512–1520. doi:10.1109/TIM.2018.2838158
  • Alchalabi, E. A., Elsharnouby, M., Shirmohammadi, S., & Nour Eddin, A. (2017b). Feasibility of detecting ADHD patients’ attention levels by classifying their EEG signals. In Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 314–319). Rochester, USA: IEEE. doi:10.1109/MeMeA.2017.7985895
  • Al-Rubaian, A., Alssum, L., Alharbi, R., Alrajhi, W., Aldayel, H., Alangari, N., … Al-Wabil, A. (2014). The design and development of empathetic serious games for dyslexia: BCI arabic phonological processing training systems. In A. Marcus (Ed.), Lecture notes in computer science, chapter design, user experience, and usability. User experience design practice (Vol. 8520, pp. 105–112). Heraklion, Crete, Greece: Springer. doi:10.1007/978-3-319-07638-6_11
  • Antle, A. N., Chesick, L., Levisohn, A., Sridharan, S. K., & Tan, P. (2015). Using neurofeedback to teach self-regulation to children living in poverty. In Proceedings of the 14th International Conference on Interaction Design and Children (IDC’15) (pp. 119–128). Boston, USA. doi:10.1145/2771839.2771852
  • Antle, A. N., Chesick, L., & Mclaren, E.-S. (2018a). Opening up the design space of neurofeedback brain–computer interfaces for children. Acm Transactions On Computer-Human Interaction, 24(6), 1–33. doi:10.1145/3175498
  • Antle, A. N., Chesick, L., Sridharan, S. K., & Cramer, E. (2018b). East meets west: A mobile brain-computer system that helps children living in poverty learn to self-regulate. Personal and Ubiquitous Computing, 22(4), 839–866. doi:10.1007/s00779-018-1166-x
  • Apperley, T. H. (2006). Genre and game studies: Toward a critical approach to video game genres. Simulation and Gaming, 37(1), 6–23. doi:10.1177/1046878105282278
  • Badcock, N. A., Preece, K. A., de Wit, B., Glenn, K., Fieder, N., Thie, J., & McArthur, G. (2015). Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ, 3, e907. doi:10.7717/peerj.907
  • Baseler, H. A., Sutter, E. E., Klein, S. A., & Carney, T. (1994). The topography of visual evoked response properties across the visual field. Electroencephalography and Clinical Neurophysiology, 90(1), 65–81. doi:10.1016/0013-4694(94)90114-7
  • Belkacem, A. N., Shin, D., Kambara, H., Yoshimura, N., & Koike, Y. (2015). Online classification algorithm for eye-movement-based communication systems using two temporal EEG sensors. Biomedical Signal Processing and Control, 16(1), 40–47. doi:10.1016/j.bspc.2014.10.005
  • Berger, T. W., Chapin, J. K., Gerhardt, G. A., McFarland, D. J., Principe, J. C., Soussou, W. V., … Tresco, P. A. (2008). Brain-computer interfaces: An international assessment of research and development trends (1st ed.). Netherlands: Springer. doi:10.1007/978-1-4020-8705-9
  • Birbaumer, N. (2006). Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 43(6), 517–532. doi:10.1111/j.1469-8986.2006.00456.x
  • Black, A. (1972). The operant conditioning of central nervous system electrical activity. Psychology of Learning and Motivation, 6, 47–95.
  • Blandón, D. Z., Muñoz, J. E., Lopez, D. S., & Gallo, O. H. (2016). Influence of a BCI neurofeedback videogame in children with ADHD. Quantifying the brain activity through an EEG signal processing dedicated toolbox. In Proceedings of the IEEE 11th Colombian Computing Conference (CCC) (pp. 1–8).  Popayan, Colombia: IEEE. doi:10.1109/ColumbianCC.2016.7750788
  • Bos, D. P., Reuderink, B., Laar, B., Gürkök, H., Mühl, C., Poel, M., … Heylen, D. (2010). Brain-computer interfacing and games, chapter design, user experience, and usability. In D. S. Tan & A. Nijholt (Eds.), User experience design practice. In Human-Computer Interaction Series (pp. 149–178). London, UK: Springer. doi:10.1007/978-1-84996-272-8_10
  • Brzan, P. P., Rotman, E., Pajnkihar, M., & Klanjsek, P. (2016). Mobile applications for control and self-management of diabetes: A systematic review. Journal of Medical Systems, 40(210), 10. doi:10.1007/s10916-016-0564-8
  • Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., … Nicolelis, M. A. L. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1(2), e42. doi:10.1371/journal.pbio.0000042
  • Cauberghe, V., & Pelsmacker, P. D. (2010). Advergames: The impact of brand prominence and game repetition on brand responses. Journal of Advertising, 39(1), 5–18. doi:10.2753/JOA0091-3367390101
  • Cauwenberg, J. V., Bourdeaudhuij, I. D., Meester, F. D., Dyck, D. V., Salmon, J., Clarys, P., & Deforche, B. (2011). Relationship between the physical environment and physical activity in older adults: A systematic review. Health Place, 17(2), 458–469. doi:10.1016/j.healthplace.2010.11.010
  • Charisis, V., Hadjidimitriou, S., Hadjileontiadis, L., Uğurca, D., & Yilmaz, E. (2015). EmoActivity - An EEG-based gamified emotion HCI for augmented artistic expression: The i-Treasures paradigm. In M. Antona & C. Stephanidis (Eds.), Lecture notes in computer science, chapter universal access in human-computer interaction. Access to the human environment and culture (Vol. 9178, pp.29–40). Cham, Los Angeles, USA: Springer. doi:10.1007/978-3-319-20687-5_4
  • Chen, C., & Huang, S. (2014). Web-based reading annotation system with an attention-based self-regulated learning mechanism for promoting reading performance. British Journal of Educational Technology, 45(5), 959–980. doi:10.1111/bjet.2014.45.issue-5
  • Chen, C.-M., & Wu, C.-H. (2015). Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance. Computers & Education, 80, 108–121. doi:10.1016/j.compedu.2014.08.015
  • Chen, S.-A., Chen, C.-H., Lin, J.-W., Ko, L.-W., & Lin, C.-T. (2014). Gaming controlling via brain-computer interface using multiple physiological signals. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC’14) (pp. 3156–3159). San Diego, USA. doi:10.1109/SMC.2014.6974413
  • Cho, O.-H., & Lee, W.-H. (2014). BCI sensor based environment changing system for immersion of 3D game. International Journal of Distributed Sensor Networks, 10(5), 8. doi:10.1155/2014/620391
  • Choi, I., Rhiu, I., Lee, Y., Yun, M. H., & Nam, C. S. (2017). A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives. PLoS ONE, 12(4), 1–35. doi:10.1371/journal.pone.0176674
  • Chuang, C.-I., & Lee, K. (2012). Audio headset with bio-signal sensors. Patent No. US8271075B2, Filed Feb. 10th., 2009, Issued Sep. 18th., 2012.
  • Chumerin, N., Manyakov, N. V., van Vliet, M., Robben, A., Combaz, A., & Hulle, M. M. V. (2013). Steady-state visual evoked potential-based computer gaming on a consumer-grade EEG device. IEEE Transactions on Computational Intelligence and Al in Games, 5(2), 100–110. doi:10.1109/TCIAIG.2012.2225623
  • Coben, R., & Evans, J. R. (2011). Neurofeedback and neuromodulation techniques and applications (1st ed.). San Diego, USA: Academic Press.
  • Cook, D. A., Hatala, R., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., … Hamstra, S. J. (2011). Technology-enhanced simulation for health professions education: A systematic review and meta-analysis. JAMA, 306(9), 978–988. doi:10.1001/jama.2011.1234
  • Coulton, P., Wylie, C. G., & Bamford, W. (2011). Brain interaction for mobile games. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments (pp. 37–44). Tampere, Finland. doi:10.1145/2181037.2181045
  • Craig, J. (2017). Adaptive audio engine for EEG-based horror game. In Proceedings of the 142nd Audio Engineering Society Convention. Berlin, Germany.
  • Crawford, C. S., Andujar, M., Jackson, F., Remy, S., & Gilbert, J. E. (2015). User experience evaluation towards cooperative brain-robot interaction, volume 9169 lecture notes in computer science. In M. Kurosu (Ed.), Human-computer interaction: design and evaluation (pp. 184–193). Cham, Los Angeles, USA: Springer. doi:10.1007/978-3-319-20901-2_17
  • Dan, Z., Xifeng, Z., & Qiangang, G. (2012). An identification system based on portable EEG acquisition equipment. In Proceedings of the 3rd International Conference on Intelligent System Design and Engineering Applications (ISDEA’12) (pp. 281–284). Hong Kong, China. doi:10.1109/ISDEA.2012.70
  • Djamal, E. C., Abdullah, M. Y., & Renaldi, F. (2017). Brain computer interface game controlling using fast fourier transform and learning vector quantization. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2–5), 71–74.
  • Duvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., & Dutoit, T. (2013). Performance of the Emotiv Epoc headset for P300-based applications. BioMedical Engineering OnLine, 12(1), 56. doi:10.1186/1475-925X-12-56
  • Fatourechi, M., Bashashati, A., Ward, R. K., & Birch, G. E. (2007). EMG and EOG artifacts in brain computer interface systems: A survey. Clinical Neurophysiology, 118, 480–494. doi:10.1016/j.clinph.2006.10.019
  • Fernandez, H., Mikami, K., & Kondo, K. (2016). Adaptable game experience through procedural content generation and brain computer interface. In ACM SIGGRAPH 2016 Posters (SIGGRAPH’16) (pp. 2). Anaheim, California. doi:10.1145/2945078.2945124
  • Fernandez, H. D., Mikami, K., & Kondo, K. (2017). Adaptable game experience based on player’s performance and EEG. In 2017 Nicograph International (NicoInt) pp. 1–8. Kyoto, Japan: IEEE. doi:10.1109/NICOInt.2017.11
  • Ferreira, A. L. S., de Miranda, L. C., de Miranda, E. E. C., & Sakamoto, S. G. (2013). A survey of interactive systems based on brain-computer interfaces. SBC Journal on 3D Interactive Systems, 4(1), 3–13.
  • Ferreira, A. L. S., Marciano, J. N., de Miranda, L. C., & de Miranda, E. E. C. (2014). Understanding and proposing a design rationale of digital games based on brain-computer interface: Results of the admiralmind battleship study. SBC Journal on Interactive Systems, 5(1), 3–15.
  • Fiałek, S., & Liarokapis, F. (2016). Emotion in Games Comparing two commercial brain computer interfaces for serious games and virtual environments. In K. Karpouzis & G. Yannakakis (Eds.), Socio-Affective Computing Book Series (Vol. 4, pp. 103–117). Cham, Switzerland: Springer. doi:10.1007/978-3-319-41316-7_6
  • Folgieri, R., Lucchiari, C., Granato, M., & Grechi, D. (2014). Brain, technology and creativity. BrainArt: A BCI-based entertainment tool to enact creativity and create drawing from cerebral rhythms. In Computers in the arts and sciences, chapter Digital Da Vinci (Vol. 1, pp.65–97). New York, USA: Springer. doi:10.1007/978-1-4939-0965-0_4
  • Folgieri, R., & Zampolini, R. (2015). BCI promises in emotional involvement in music and games. Computers in Entertainment, 12(1), 10.
  • Folgieri, R., & Zichella, M. (2012). A BCI-based application in music: Conscious playing of single notes by brainwaves. Computers in Entertainment, 10(1), 10. doi:10.1145/2381876.2381877
  • Geeta, N., & Gavas, R. D. (2014). Enhanced learning with abacus and its analysis using BCI technology. International Journal of Modern Education and Computer Science, 6(9), 22–27. doi:10.5815/ijmecs.2014.09.04
  • Gerrard, P., & Malcolm, R. (2007). Mechanisms of modafinil: A review of current research. Neuropsychiatric Disease and Treatment, 3(3), 349–364.
  • Gui, Q., Jin, Z., & Xu, W. (2014). Exploring EEG-based biometrics for user identification and authentication. In Proceedings of the IEEE Symposium on Signal Processing in Medicine and Biology (SPMB’14) (pp. 1–6). Philadelphia, USA. doi:10.1109/SPMB.2014.7002950
  • Guo, F., Zhao, X., Chen, J., & Zhang, F. (2018). Virtual game scenario generation using brain computer interface. In X. Jiang & J.-N. Hwang (Eds.), Proceedings of the Tenth International Conference on Digital Image Processing (ICDIP 2018) (pp. 167). Shanghai, China: SPIE. doi:10.1117/12.2503027
  • Gürkök, H., van de Laar, B., Bos, D. P.-O., Poel, M., & Nijholt, A. (2014). Players’ opinions on control and playability of a BCI game. In C. Stephanidis & M. Antona (Eds.), Lecture notes in computer science, chapter universal access in human-computer interaction. Universal access to information and knowledge (Vol. 8514, pp.549–560). Cham, Crete, Greece: Springer. doi:10.1007/978-3-319-07440-5_50
  • Hazrati, M. K., & Hofmann, U. G. (2013). Avatar navigation in second life using brain signals. In Proceedings of the IEEE 8th International Symposium on Intelligent Signal Processing (WISP’13) (pp. 1–7). Funchal, Portugal. doi:10.1109/WISP.2013.6657473
  • Heidrich, R., Branco, M. A., Mossmann, J. B., Schuh, A., & Jensen, E. (2015). Development of BCI based softwares to assist people with mobility limitations in the school inclusion process. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS’15) (pp. 397–398). Lisbon, Portugal. doi:10.1145/2700648.2811388
  • Heidrich, R., Rebelo, F., Branco, M., Mossmann, J. B., Schuh, A., Jensen, E., & Oliveira, T. (2016). Questing Ruins: A Game for a Digital Inclusion. In Design, user experience, and usability: Novel user experiences. DUXU 2016. Lecture notes in computer science (vol. 9747 pp. 264–272). Toronto, Canada: LNCS. doi:10.1007/978-3-319-40355-7_25
  • Hema, C. R., Paulraj, M. P., & Kaur, H. (2008). Brain signatures: A modality for biometric authentication. In Proceedings of the International Conference on Electronic Design (ICED’08) (pp. 1–4). Penang, Malaysia. doi:10.1109/ICED.2008.4786753
  • Henrik, C., Olle, H., Craig, L., Charlotte, S., & Jeanette, E. (2011). The aiming game: Using a game with biofeedback for training in emotion regulation. In Proceedings of the 2011 DiGRA International Conference: Think Design Play (DiGRA’11) (p., 18). Hilversum, The Netherlands.
  • Hjorungdal, R.-M., Sanfilippo, F., Osen, O. L., Rutle, A., & Bye, R. T. (2016). A game-based learning framework for controlling brain-actuated wheelchairs. In Proceedings of the 30th European Conference on Modelling and Simulation (ECMS’16) (p. 10). Regensburg, Germany. doi:10.7148/2016-0554
  • Hou, X., & Sourina, O. (2013). Emotion-enabled haptic-based serious game for post stroke rehabilitation. In Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology (VRST’13) (pp. 31–34). Singapore. doi:10.1145/2503713.2503738
  • Hsieh, C.-H., Chu, H.-P., & Huang, Y.-H. (2014). An HMM-based eye movement detection system using EEG brain-computer interface. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’14) (pp. 662–665). Melbourne, Australia. doi:10.1109/ISCAS.2014.6865222
  • Iidal, Y., Tsutsumi, D., Saeki, S., Ootsuka, Y., Hashimoto, T., & Horie, R. (2017). The effect of immersive head mounted display on a brain computer interface game. In W. Chung & C. Shin (Eds.), Advances in intelligent systems and computing (Vol. 483, pp. 211–219). Cham, Switzerland: Springer.
  • Israsena, P., Hemrungrojn, S., Sukwattanasinit, N., & Maes, M. (2015). Development and evaluation of an interactive electro-encephalogram-based neurofeedback system for training attention and attention defects in children. Journal of Medical Imaging and Health Informatics, 5(5), 1045–1052. doi:10.1166/jmihi.2015.1492
  • Jackson, M. M. M., Mason, S. G., & Birch, G. E. (2006). Analyzing trends in brain interface technology: A method to compare studies. Annals of Biomedical Engineering, 34(5), 859–877. doi:10.1007/s10439-005-9055-7
  • Janarthanan, V. (2012). Serious video games: Games for education and health. In Proceedings of the 9th International Conference on Information Technology (ITNG’12) (pp. 875–878). Los Vegas, USA. doi:10.1109/ITNG.2012.79
  • Jeunet, C., Debener, S., Lotte, F., Mattout, J., Scherer, R., & Zich, C. (2018). Mind the traps: Design guidelines for rigorous BCI experiments, chapter 32. In Brain-computer interfaces handbook: Technological and theoretical advance (1st ed., pp. 1–22). Boca Raton, Florida, USA: CRC Press, Taylor & Francis. doi:10.1201/9781351231954
  • Jiang, H., & Johnstone, S. J. (2015). A preliminary multiple case report of neurocognitive training for children with AD/HD in china. SAGE Open, 5(2), 215824401558681. doi:10.1177/2158244015586811
  • Johnstone, S. J., Blackman, R., & Bruggemann, J. M. (2012). EEG from a single-channel dry-sensor recording device. Clinical EEG and Neuroscience, 43, 112–120. doi:10.1177/1550059411435857
  • Johnstone, S. J., Roodenrys, S. J., Johnson, K., Bonfield, R., & Bennett, S. J. (2017). Game-based combined cognitive and neurofeedback training using Focus Pocus reduces symptom severity in children with diagnosed AD/HD and subclinical AD/HD. International Journal of Psychophysiology, 116, 32–44. doi:10.1016/j.ijpsycho.2017.02.015
  • Joselli, M., Binder, F., Clua, E., & Soluri, E. (2014). MindNinja: Concept, development and evaluation of a mind action game based on EEGs. In Proceedings of the 13th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames’14) (pp. 811–818). Porto Alegre, Brazil. doi:10.1109/SBGAMES.2014.14
  • Joselli, M., Binder, F., Clua, E., & Soluri, E. (2017). Concept, development and evaluation of a mind action game with the electro encephalograms as an auxiliary input. SBC Journal on Interactive Systems, 8(1), 60–73.
  • Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage, 34(4), 1600–1611. doi:10.1016/j.neuroimage.2006.09.024
  • Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (1st ed.). New York, NY: McGraw-Hill.
  • Kang, H.-J., Kim, D.-H., Kim, B. M., Oh, D., & Jang, S.-B. (2016). Design and implementation of a three-dimensional game based on a brain-computer interface. International Journal of Advanced Science and Technology, 95, 73–88. doi:10.14257/ijast
  • Kaplan, C. (2018). Like catching a wave: Qualitative study of EEG neurofeedback game controls. PEOPLE: International Journal of Social Sciences, 4(3), 436–457.
  • Käthner, I., Ruf, C. A., Pasqualotto, E., Braun, C., Birbaumer, N., & Halder, S. (2013). A portable auditory P300 brain-computer interface with directional cues. Clinical Neurophysiology, 124(2), 327–338. doi:10.1016/j.clinph.2012.08.006
  • Kerous, B., Skola, F., & Liarokapis, F. (2018). EEG-based BCI and video games: A progress report. Virtual Reality, 22(2), 119–135. doi:10.1007/s10055-017-0328-x
  • Khong, A., Jiangnan, L., Thomas, K. P., & Vinod, A. P. (2014). BCI based multi-player 3-D game control using EEG for enhancing attention and memory. In Proceedings of the IEEE International Conference on Systems Man and Cybernetics (SMC’14) (pp. 1847–1852). San Diego, USA. doi:10.1109/SMC.2014.6974189
  • Kim, D., & Cho, S.-B. (2014). A brain-computer interface for shared vehicle control on TORCS car racing game. In Proceedings of the 10th International Conference on Natural Computation (ICNC’14) (pp. 550–555). Xiamen, China. doi:10.1109/ICNC.2014.6975894
  • Kim, M.-K., Kim, M., Oh, E., & Kim, S.-P. (2013). A review on the computational methods for emotional state estimation from the human EEG. Computational and Mathematical Methods in Medicine, 2013(1), 13. doi:10.1155/2013/573734
  • Kitchenham, B., & Charters, S. M. (2007). Guidelines for performing systematic literature reviews in software engineering. EBSE technical report (EBSE-2007-01). Keele, UK: Software Engineering Group Keele University
  • Ko, M., Bae, K., Oh, G., & Ryu, T. (2009). A study on new gameplay based on brain-computer interface. In Proceedings of the Digital Games Research Association (DiGRA’09) (pp. 1–7). West London, UK.
  • Kos’myna, N., & Tarpin-Bernard, F. (2013). Evaluation and comparison of a multimodal combination of BCI paradigms and eye tracking with affordable consumer-grade hardware in a gaming context. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 150–154. doi:10.1109/TCIAIG.2012.2230003
  • Kübler, A., Kotchoubey, B., Kaiser, J., & Birbaumer, N. (2001). Brain-computer communication: Unlocking the locked in. Psychological Bulletin, 127(3), 358–375. doi:10.1037/0033-2909.127.3.358
  • Laamarti, F., Eid, M., & Saddik, A. E. (2014). An overview of serious games. International Journal of Computer Games Technology, 2014(1), 15. doi:10.1155/2014/358152
  • Lebedev, M. A., & Nicolelis, M. A. L. (2017). Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiological Reviews, 97(2), 767–837. doi:10.1152/physrev.00027.2016
  • Lécuyer, A., Lotte, F., Reilly, R. B., Leeb, R., Hirose, M., & Slater, M. (2008). Brain-computer interfaces, virtual reality, and videogames. Computer, 41(10), 66–72. doi:10.1109/MC.2008.410
  • Lee, J., & Lai, K.-Y. (1991). What’s in design rationale? Human-Computer Interaction, 6(3–4), 251–280.
  • Lee, T.-S., Goh, S. J. A., Quek, S. Y., Phillips, R., Guan, C., Cheung, Y. B., … Krishnan, K. R. R. (2013). A brain-computer interface based cognitive training system for healthy elderly: A randomized control pilot study for usability and preliminary efficacy. PLoS ONE, 8(11), 8. doi:10.1371/journal.pone.0079419
  • Li, M., Chai, Q., Kaixiang, T., Wahab, A., & Abut, H. (2009). EEG emotion recognition system. In K. Takeda, H. Erdogan, J. H. L. Hansen, & H. Abut (Eds.), Mechanical engineering (Vol. 1, chapter In-Vehicle Corpus and Signal Processing for Driver Behavior pp. 125–135). Boston, MA: Springer. doi:10.1007/978-0-387-79582-9_10
  • Liang, S., Choi, K.-S., Qin, J., Pang, W.-M., & Heng, P.-A. (2014). Effective user training for motor imagery based brain computer interface with object-directed 3D visual display. In Proceedings of the 7th International Conference on BioMedical Engineering and Informatics (BMEI’14) (pp. 297–301). Dalian, China. doi:10.1109/BMEI.2014.7002788
  • Liarokapis, F., Debattista, K., Vourvopoulos, A., Petridis, P., & Ene, A. (2014a). Comparing interaction techniques for serious games through brain-computer interfaces: A user perception evaluation study. Entertainment Computing, 5(4), 391–399. doi:10.1016/j.entcom.2014.10.004
  • Liarokapis, F., Vourvopoulos, A., & Ene, A. (2014b). Examining user experiences through a multimodal BCI puzzle game. In Proceedings of the 19th International Conference on Information Visualisation (iV’15) (p. 6). Barcelona, Spain. doi:10.1109/iV.2015.87
  • Liarokapis, F., Vourvopoulos, A., Ene, A., & Petridis, P. (2013). Assessing brain-computer interfaces for controlling serious games. In Proceedings of the 5th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games’13) (pp., 4). Poole, UK. doi:10.1109/VS-GAMES.2013.6624222
  • Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., … Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine, 151(4), 65–94. doi:10.7326/0003-4819-151-4-200908180-00136
  • Lim, C. G., Lee, T. S., Guan, C., Fung, D. S. S., Zhao, Y., Teng, S. S. W., … Krishnan, K. R. R. (2012). A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder. PLoS ONE, 7(10). doi:10.1371/journal.pone.0046692
  • Lim, W. L., Sourina, O., & Wang, L. (2015). MIND - an EEG neurofeedback multitasking game. In Proceedings of the 2015 International Conference on Cyberworlds (CW) (pp. 169–172). Visby, Sweden: IEEE. doi:10.1109/CW.2015.39
  • Liu, Y., Hou, X., & Sourina, O. (2015). Fractal dimension based neurofeedback training to improve cognitive abilities. In Proceedings of the 7th Computer Science and Electronic Engineering Conference (CEEC’15) (pp. 152–156). Colchester, UK. doi:10.1109/CEEC.2015.7332716
  • Liu, Y., Hou, X., Sourina, O., & Bazanova, O. (2016). Individual theta/beta based algorithm for neurofeedback games to improve cognitive abilities. In M. L. Gavrilova & C. K. Tan volume 9570 of Lecture Notes in Computer Science Eds., Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (pp. 57–73). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-49247-5_4
  • Liu, Y., Jiang, X., Cao, T., Wan, F., Mak, P. U., Mak, P.-I., & Vai, M. I. (2012). Implementation of SSVEP based BCI with Emotiv EPOC. In Proceedings of the IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS’12) (pp. 34–37). Tianjin, China. doi:10.1109/VECIMS.2012.6273184
  • Liu, Y., Sourina, O., & Hou, X. (2014). Neurofeedback games to improve cognitive abilities. In Proceedings of the International Conference on Cyberworlds (CW’14) (pp. 161–168). Santander, Spain, doi:10.1109/CW.2014.30
  • Liu, Y., Sourina, O., & Nguyen, M. K. (2011). Real-time EEG-based emotion recognition and its applications. In M. L. Gavrilova, C. J. K. Tan, A. Sourin, & O. Sourina (Eds.), Lecture Notes in Computer Science (Vol. 6670, pp. 256–277). chapter Transactions on Computational Science XII, Berlin, Germany: Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-22336-5_13
  • Liu, Y., Subramaniam, S. C. H., Sourina, O., Shah, E., Chua, J., & Ivanov, K. (2017). Neurofeedback training for rifle shooters to improve cognitive ability. In Proceedings of the 2017 International Conference on Cyberworlds (CW’17) (pp. 186–189). Chester, UK: IEEE. doi:10.1109/CW.2017.36
  • Liu, Y., Wang, J., Yin, E., Yu, Y., Zhou, Z., & Hu, D. (2018). An tactile ERP-based brain–computer interface for communication. International Journal Of Human–Computer Interaction, 35(7),559–567. doi:10.1080/10447318.2018.1471839
  • Lotte, F. (2011). Brain-computer interfaces for 3D games: Hype or hope? In Proceedings of the 6th International Conference on Foundations of Digital Games (FDG’11) (pp. 325–327). Bordeaux, France. doi:10.1145/2159365.2159427
  • Mannan, M. M. N., Kamran, M. A., Kang, S., & Jeong1, M. Y. (2018). Effect of EOG signal filtering on the removal of ocular artifacts and EEG-based brain-computer interface: A comprehensive study. In G. Ouyang (Ed.), Complexity (Vol. 2018, pp. 1–18). Hindwari. doi:10.1155/2018/4853741
  • Marshall, D., Coyle, D., Wilson, S., & Callaghan, M. (2013). Games, gameplay, and BCI: The state of the art. IEEE Transactions on Computational Intelligence and Al in Games, 5(2), 82–99. doi:10.1109/TCIAIG.2013.2263555
  • Martini, F. H., Timmons, M. J., & Tallitsch, R. B. (2011). Human Anatomy (7th ed.). USA: Pearson.
  • Martisius, I., & Damasevicius, R. (2016). A prototype SSVEP based real time BCI gaming system. Computational Intelligence and Neuroscience, 2016(1), 15. doi:10.1155/2016/3861425
  • Maskeliunas, R., Damasevicius, R., Martisius, I., & Vasiljevas, M. (2016). Consumer grade EEG devices: Are they usable for control tasks? PeerJ, 4, 1–27. doi:10.7717/peerj.1746
  • Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition and Emotion, 23(2), 209–237. doi:10.1080/02699930802204677
  • Merone, M., Soda, P., Sansone, M., & Sansone, C. (2017). Ecg databases for biometric systems: A systematic review. Expert Systems with Applications, 67(1), 189–202. doi:10.1016/j.eswa.2016.09.030
  • Michael, D. R., & Chen, S. L. (2005). Serious games: Games that educate, train, and inform (1st ed.). Boston, USA: Course Technology PTR.
  • Ming, D., Zhang, M., Xi, Y., Qi, H., Hu, Y., & Luk, K. (2009). Multiscale entropy analysis of attention ralated EEG based on motor imaginary potential. In Proceedings of the IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA’09) (pp. 24–27). Hong Kong, China. doi:10.1109/CIMSA.2009.5069911
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. doi:10.7326/0003-4819-151-4-200908180-00135
  • Moore, M. M. (2003). Real-world applications for brain-computer interface technology. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 162–165. doi:10.1109/TNSRE.2003.814433
  • Moriyama, T. S., Polanczyk, G. V., Caye, A., Banaschewski, T., Brandeis, D., & Rohde, L. A. (2012). Evidence-based information on the clinical use of neurofeedback for ADHD. Journal Of The American Society For Experimental NeuroTherapeutics, 9(3), 588–598. doi:10.1007/s13311-012-0136-7
  • Munck, J. C., Gonçalves, S. I., Mammoliti, R., Heethaar, R. M., & Da Silva, F. H. L. (2009). Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations. NeuroImage, 47(1), 69–76. doi:10.1016/j.neuroimage.2009.04.029
  • Munoz, J., Henao, O., López, J. F., & Villada, J. F. (2013). BKI: Brain kinect interface, a new hybrid BCI for rehabilitation. In Proceedings of the 3rd European Conference on Gaming and Playful Interaction in Health Care (pp. 233–245). Wiesbaden, Germany. doi:10.1007/978-3-658-02897-8_18
  • Muñoz, J. E., Gonçalves, A., Vieira, T., Cró, D., Chisik, Y., & Bermúdez I Badia, S. (2016). Space connection - a multiplayer collaborative biofeedback game to promote empathy in teenagers: A feasibility study. In Proceedings of the 3rd International Conference on Physiological Computing Systems (pp. 88–97). Lisbon, Portugal: SCITEPRESS - Science and Technology Publications. doi:10.5220/0005948400880097
  • Munoz, J. E., Lopez, D. S., Lopez, J. F., & Lopez, A. (2015). Design and creation of a BCI videogame to train sustained attention in children with ADHD. In Proceedings of the 10th Computing Colombian Conference (CCC’15) (pp. 194–199). Bogota, Colombia. doi:10.1109/ColumbianCC.2015.7333431
  • Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., & Desa, H. (2008). Lifting scheme for human emotion recognition using EEG. In Proceedings of the International Symposium on Information Technology (ITSim’08) (pp. 1–7). Kuala lumpur, Malaysia. doi: 10.1109/ITSIM.2008.4631646
  • Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain-computer interfaces, a review. Sensors, 12(2), 1211–1279. doi:10.3390/s120201211
  • Niedermeyer, E., & Da Silva, F. L. (2010). Electroencephalography: Basic principles, clinical applications, and related fields (6th ed.). New York, NY: Lippincot Williams and Wilkins.
  • Nijholt, A., Bos, D. P.-O., & Reuderink, B. (2009). Turning shortcomings into challenges: Brain-computer interfaces for games. Entertainment Computing, 1(2), 85–94. doi:10.1016/j.entcom.2009.09.007
  • Nowack, W. J. (1995). Neocortical dynamics and human EEG rhythms. Neurology, 45(9), 1793–1793–a. doi:10.1212/WNL.45.9.1793-a
  • Ochi, Y., Laksanasopin, T., Kaewkamnerdpong, B., & Thanasuan, K. (2017). Neurofeedback game for attention training in adults. In Proceedings of the 10th Biomedical Engineering International Conference (BMEiCON) (pp. 1–5). Hokkaido, Japan: IEEE. doi:10.1109/BMEiCON.2017.8229113
  • Ortner, R., Lugo, Z., Noirhomme, Q., Laureys, S., & Guger, C. (2014). A tactile Brain-Computer Interface for severely disabled patients. In Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS) (pp. 235–237). Houston, USA: IEEE. doi:10.1109/HAPTICS.2014.6775460
  • Pavitrakar, V. R. (2013). Survey of brain computer interaction. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(4), 1647–1652.
  • Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Research, 41(10–11), 1257–1260. doi:10.1016/S0042-6989(00)00235-2
  • Pfurtscheller, G., & Neuper, C. (2002). Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 89(7), 1123–1134. doi:10.1109/5.939829
  • Pfurtscheller, G., Neuper, C., Flotzinger, D., & Pregenzer, M. (2002). EEG-based discrimination between imagination of right and left hand movement. Electroencephalography and Clinical Neurophysiology, 103(6), 642–651. doi:10.1016/S0013-4694(97)00080-1
  • Pineda, J. A. (2006). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing”. Brain Research Reviews, 50(1), 57–68. doi:10.1016/j.brainresrev.2005.04.005
  • Podoprikhin, D. A. (2015). Implementation of the “labyrinth” game by brain-computer interface tools. Computational Mathematical and Modelling, 26(4), 555–565. doi:10.1007/s10598-015-9292-z
  • Poulios, N., & Eliens, A. (2013). Multi-sensor interactive systems for embodied learning games. In Lecture notes in computer science (Vol. 8253, pp. 616–621). chapter Advances in Computer Entertainment. Cham, Boekelo, The Netherlands: Springer. doi:10.1007/978-3-319-03161-3_66
  • Punsawad, Y., & Wongsawat, Y. (2017). Multi-command SSAEP-based BCI system with training sessions for SSVEP during an eye fatigue state. IEEJ Transactions on Electrical and Electronic Engineering, 12, S72–S78. doi:10.1002/tee.2017.12.issue-S1
  • Qiang, W., Sourina, O., & Khoa, N. M. (2010). Fractal dimension based algorithm for neurofeedback games. In Proceedings of the Computer Graphics International (CGI’10) (pp. 1–4). Singapore.
  • Ratti, E., Waninger, S., Berka, C., Ruffini, G., & Verma, A. (2017). Comparison of medical and consumer wireless EEG systems for use in clinical trials. Frontiers in Human Neuroscience, 1, 1–7. doi:10.3389/fnhum.2017.00398
  • Rebolledo-Mendez, G., Dunwell, I., Martínez-Mirón, E. A., Vargas-Cerdán, M. D., de Freitas, S., Liarokapis, F., & García-Gaona, A. R. (2009). Assessing NeuroSky’s usability to detect attention levels in an assessment exercise, volume 5610 lecture notes in computer science, Proceedings of the International Conference on Human-Computer Interaction (HCI’09) edition, (pp. 149–158(Berlin, Heidelberg, Springer. doi:10.1007/978-3-642-02574-7_17
  • Rechy-Ramirez, E. J., Marin-Hernandez, A., & Rios-Figueroa, H. V. (2018). Impact of commercial sensors in human computer interaction: A review. Journal of Ambient Intelligence and Humanized Computing, 9, 1479–1496. doi:10.1007/s12652-017-0568-3
  • Reinschluessel, A. V., & Mandryk, R. L. (2016). Using positive or negative reinforcement in neurofeedback games for training self-regulation. Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play - CHI PLAY ’16, (pp. 186–198). New York, USA, ACM Press. doi:10.1145/2967934.2968085
  • Schoneveld, E. A., Lichtwarck-Aschoff, A., & Granic, I. (2018). Preventing childhood anxiety disorders: is an applied game as effective as a cognitive behavioral therapy-based program? Prevention Science, 19(2), 220–232. doi:10.1007/s11121-017-0823-z
  • Schoneveld, E. A., Malmberg, M., Lichtwarck-Aschoff, A., Verheijen, G. P., Engels, R. C., & Granic, I. (2016). A neurofeedback video game (MindLight) to prevent anxiety in children: A randomized controlled trial. Computers in Human Behavior, 63, 321–333. doi:10.1016/j.chb.2016.05.005
  • Schwarz, D., Subramanian, V., Zhuang, K., & Adamczyk, C. (2014). Educational neurogaming: EEG-controlled videogames as interactive teaching tools for introductory neuroscience. In Proceedings of the 10th Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE’14) (pp. 49–52). Raleigh, North Carolina.
  • Sedeeq, A., & Romano, D. (2014). Brain controlled games: Concepts and classifiers. In Proceedings of the 50th Annual Convention of the Artificial Intelligence and Simulation Behaviour (AISB’14) (pp. 5). London, UK.
  • Sharbrough, F., Chatrian, G.-E., Lesser, R. P., Lüders, H., Nuwer, M., & Picton, T. W. (1991). American electroencephalographic society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 8(2), 200–202. doi:10.1097/00004691-199104000-00007
  • Shenjie, S., Thomas, K. P., Smitha, K. G., & Vinod, A. P. (2014). Two player EEG-based neurofeedback ball game for attention enhancement. In Proceedings of the IEEE International Conference on Systems Man and Cybernetics (SMC’14) (pp. 3150–3155). San Diego, USA. doi:10.1109/SMC.2014.6974412
  • Sourina, O., & Liu, Y. (2014). EEG-enabled affective human-computer interfaces. In C. Stephanidis & M. Antona (Eds.), Lecture Notes in Computer Science (Vol. 8513, pp. 536–547). chapter Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. Cham, Crete, Greece: Springer. doi:10.1007/978-3-319-07437-5_51
  • Sourina, O., Liu, Y., Wang, Q., & Nguyen, M. K. (2011). EEG-based personalized digital experience. In C. Stephanidis (Ed.), Lecture Notes in Computer Science (Vol. 6766, pp. 393–422). Chapter Universal Access in Human-Computer Interaction. Users Diversity.Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-21663-3_64
  • Stanescu, M., & Stanescu, A. B. (2016). Serious games in the tennis players’ mental training. In Proceedings of the 12th International Scientific Conference eLearning and Software for Education (Vol. 3, pp. 486–497). Bucharest, Romania. doi:10.12753/2066-026X-16-238
  • Stein, A., Yotam, Y., Puzis, R., Shani, G., & Taieb-Maimon, M. (2018). EEG-triggered dynamic difficulty adjustment for multiplayer games. In Entertainment computing (Vol. 25, pp. 14–25). Amsterdam, Netherlands: Elsevier. doi:10.1016/j.entcom.2017.11.003
  • Symonds, A., Barbareschi, G., Taylor, S., & Holloway, C. (2017). A systematic review: The influence of real time feedback on wheelchair propulsion biomechanics. Disability and Rehabilitation: Assistive Technology, 13(1), 1–10.Taylor & Francis. doi:10.1080/17483107.2016.1278472
  • Szajerman, D., Warycha, M., Antonik, A., & Wojciechowski, A. (2017). Popular brain computer interfaces for game mechanics control. In Advances in Intelligent Systems and Computing (Vol. 506, pp. 123–134). Wrocław, Poland. doi:10.1007/978-3-319-43982-2_11
  • Taherian, S., Selitskiy, D., Pau, J., & Claire Davies, T. (2017). Are we there yet? Evaluating commercial grade brain–Computer interface for control of computer applications by individuals with cerebral palsy. Disability and Rehabilitation: Assistive Technology, 12(2), 165–174. doi:10.3109/17483107.2015.1111943
  • Taherian, S., Selitskiy, D., Pau, J., Davies, T. C., & Owens, R. G. (2014). Training to use a commercial brain-computer interface as access technology: A case study. Disability and Rehabilitation: Assistive Technology, 11(4), 1–6. doi:10.3109/17483107.2014.967313
  • Tang, J., Liu, Y., Jiang, J., Yu, Y., Hu, D., & Zhou, Z. (2018). Toward brain-actuated mobile platform. International Journal Of Human–Computer Interaction, 1–12. doi:10.1080/10447318.2018.1502000
  • Thomas, K. P., & Vinod, A. P. (2016). A study on the impact of neurofeedback in EEG based attention-driven game. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 320–325). Budapest, Hungary: IEEE. doi:10.1109/SMC.2016.7844260.
  • Thomas, K. P., Vinod, A. P., & Guan, C. (2013a). Design of an online EEG based neurofeedback game for enhancing attention and memory. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’13) (pp. 433–436). Osaka, Japan. DOI: 10.1109/EMBC.2013.6609529
  • Thomas, K. P., Vinod, A. P., & Guan, C. (2013b). Enhancement of attention and cognitive skills using EEG based neurofeedback game. In Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER’13) (pp. 21–24). San Diego, USA. doi:10.1109/NER.2013.6695861
  • Thomas, K. P., Vinod, A. P., & Guan, C. (2014). Evaluation of EEG features during overt visual attention during neurofeedback game. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC’14) (pp. 1841–1846). San Diego, USA. doi: 10.1109/SMC.2014.6974188
  • van de Laar, B., Gürkök, H., Bos, D. P.-O., Poel, M., & Nijholt, A. (2013). Experiencing BCI control in a popular computer game. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 176–184. doi:10.1109/TCIAIG.2013.2253778
  • van der Pal, J., Roos, C., & Sewnath, G. (2018). Exploring adaptive game-based learning using brain measures. In D. Sampson, D. Ifenthaler, J. Spector, & P. Isaías (Eds.), Digital technologies: sustainable innovations for improving teaching and learning (pp. 161–171). Cham, Switzerland: Springer. doi:10.1007/978-3-319-73417-0_10
  • van der Pal, J., Roos, C., Sewnath, G., & Rosheuvel, C. (2016). Adaptive game based learning using brain measures for attention–some explorations. In Proceedings of the 13th International Conference on Cognition and Exploratory Learning in the Digital Age, CELDA 2016 (pp. 343–348). Mannheim, Germany.
  • van Vliet, M., Robben, A., Chumerin, N., Manyakov, N. V., Combaz, A., & Hulle, M. M. V. (2012). Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In Proceedings of the ISSNIP Biosignals and Biorobotics Conference (BRC’12) (pp. 1–6). Manaus, Brazil. doi:10.1109/BRC.2012.6222186
  • Vasiljevic, G. A. M., de Miranda, L. C., & de Menezes, B. C. (2018a). Mental War: An Attention-based Single/Multiplayer Brain-Computer Interface Game. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol.10960 pp. 450–465). Melbourne, Australia: LNCS. doi:10.1007/978-3-319-95162-1_31
  • Vasiljevic, G. A. M., de Miranda, L. C., & de Menezes, B. C. (2018b). Zen cat: A meditation-based brain-computer interface game. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), (Vol. 10960 pp. 294–309). Melbourne, Australia: LNCS. doi:10.1007/978-3-319-95162-1_20
  • Vasiljevic, G. A. M., & Miranda, L. C. (2019). The influence of graphical elements on user’s attention and control on a neurofeedback-based game. Entertainment Computing, 29, 10–19. doi:10.1016/j.entcom.2018.10.003
  • Vernon, D., Dempster, T., Bazanova, O., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214–227. doi:10.1080/10874200903334397
  • Verplaetse, T., Sanfilippo, F., Rutle, A., Osen, O. L., & Bye, R. T. (2016). On usage of EEG brain control for rehabilitation of stroke patients. In Proceedings of the 30th European Conference on Modelling And Simulation (ECMS’16) (pp. 10). Regensburg, Germany. doi:10.7148/2016-0544
  • Vidaurre, C., & Blankertz, B. (2010). Towards a cure for BCI illiteracy. Brain Topography, 23(2), 194–198. doi:10.1007/s10548-009-0121-6
  • Vourvopoulos, A., & Liarokapis, F. (2012). Robot navigation using brain-computer interfaces. In Proceedings of the IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (pp. 1785–1792). Liverpool, UK. doi:10.1109/TrustCom.2012.247
  • Vourvopoulos, A., Liarokapis, F., & Petridis, P. (2012). Brain-controlled serious games for cultural heritage. In Proceedings of the 18th International Conference on Virtual Systems and Multimedia (VSMM’12) (pp. 291–298). Milan, Italy. doi:10.1109/VSMM.2012.6365937
  • Wang, A. I., & Larsen, E. A. (2012). Using brain-computer interfaces in an interactive multimedia application. In Proceedings of the 24th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS’12) (pp. 8). Las Vegas, USA. doi:10.2316/P.2012.790-046
  • Wang, Z., Yu, Y., Xu, M., Liu, Y., Yin, E., & Zhou, Z. (2018). Towards a hybrid bci gaming paradigm based on motor imagery and ssvep. International Journal Of Human–Computer Interaction, 35(3), 197–205. doi:10.1080/10447318.2018.1445068
  • Weinel, J., Cunningham, S., Roberts, N., Griffiths, D., & Roberts, S. (2015). Quake delirium EEG. In Proceedings of the Sixth International Conference on Internet Technologies and Applications (ITA’15) (pp. 4). Wrexham, UK. doi:10.1109/ITechA.2015.7317420
  • Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering (1st ed.). Berlin, Heidelberg: Springer.
  • Wolf, M. J. P. (2012). Encyclopedia of video games: The culture, technology, and art of gaming (1st ed.). Santa Barbara, California: ABC-CLIO.
  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. doi:10.1016/S1388-2457(02)00057-3
  • Wols, A., Lichtwarck-Aschoff, A., Schoneveld, E. A., & Granic, I. (2018). In-game play behaviours during an applied video game for anxiety prevention predict successful intervention outcomes. Journal of Psychopathology and Behavioral Assessment, 40(4), 655–668. doi:10.1007/s10862-018-9684-4
  • Wong, C. M., Tang, Q., Cruz, J. N., & Wan, F. (2015). A multi-channel SSVEP-based BCI for computer games with analogue control. In Proceedings of the IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA’15) (pp. 1–6). Shenzhen, China. doi:10.1109/CIVEMSA.2015.7158612
  • Wu, G., Xie, Z., & Wang, X. (2014). Development of a mind-controlled Android racing game using a brain computer interface (BCI). In Proceedings of the Fourth IEEE International Conference on Information Science and Technology (ICIST’14) (pp. 652–655). Shenzhen, China. doi:10.1109/ICIST.2014.6920562
  • Yang, L., & Leung, H. (2013). An online BCI game based on the decoding of users’ attention to color stimulus. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’13) (pp. 5267–5270). Osaka, Japan. doi: 10.1109/EMBC.2013.6610737
  • Yeo, S. N., Lee, T. S., Sng, W. T., Heo, M. Q., Bautista, D., Cheung, Y. B., … Guan, C. (2018). Effectiveness of a personalized brain-computer interface system for cognitive training in healthy elderly: A randomized controlled trial. Journal of Alzheimer’s Disease, 66(1), 127–138. doi:10.3233/JAD-180616
  • Yoon, H., Park, S.-W., Lee, Y.-K., & Jang, J.-H. (2013). Emotion recognition of serious game players using a simple brain computer interface. In Proceedings of the International Conference on ICT Convergence (ICTC’13) (pp. 783–786). Jeju, South Korea. doi: 10.1109/ICTC.2013.6675478
  • Zander, T. O., Kothe, C., Jatzev, S., & Gaertner, M. (2010). Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In D. Tan & A. Nijholt (Eds.), Brain-computer interfaces (pp. 181–199). London, UK: Springer. doi:10.1007/978-1-84996-272-8_11.
  • Zare, M., Pahl, C., Rahnama, H., Nilashi, M., Mardani, A., Ibrahim, O., & Ahmadi, H. (2016). Multi-criteria decision making approach in E-learning: A systematic review and classification. Applied Soft Computing, 45(1), 108–128. doi:10.1016/j.asoc.2016.04.020
  • Zhu, D., Bieger, J., Molina, G. G., & Aarts, R. M. (2010). A survey of stimulation methods used in SSVEP-based BCIs. Computational Intelligence and Neuroscience, 2010(1), 12. doi:10.1155/2010/702357

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.