1,949
Views
28
CrossRef citations to date
0
Altmetric
Survey Article

A Systematic Review of Ten Years of Research on Human Interaction with Social Robots

, , &

References

  • Abe, K., Hieida, C., Attamimi, M., Nagai, T., Shimotomai, T., Omori, T., & Oka, N. (2014). Toward playmate robots that can play with children considering personality. Proceedings of the acm international conference on human-agent interaction (pp. 165–168). Tsukuba, Japan.
  • Ahmad, M. I., Mubin, O., & Orlando, J. (2017). Adaptive social robot for sustaining social engagement during long-term children–robot interaction. International Journal of Human– Computer Interaction, 33(12), 943–962. https://doi.org/10.1080/10447318.2017.1300750
  • Aly, A., & Tapus, A. (2013). A model for synthesizing a combined verbal and nonverbal behavior based on personality traits in human-robot interaction. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 325–332). Tokyo, Japan.
  • Andrist, S., Mutlu, B., & Tapus, A. (2015). Look like me: Matching robot personality via gaze to increase motivation. Proceedings of the acm conference on human factors in computing systems (pp. 3603–3612). Seoul, Republic of Korea.
  • Baek, C., Choi, J. J., & Kwak, S. S. (2014). Can you touch me? the impact of physical contact on emotional engagement with a robot. Proceedings of the international conference on human-agent interaction (pp. 149–152). Tsukuba, Japan.
  • Bartneck, C., Croft, E., & Kulic, D. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 1(1), 71–81. https://doi.org/10.1007/s12369-008-0001-3
  • Bechade, L., Dubuisson Duplessis, G., Sehili, M., & Devillers, L. (2015). Behavioral and emotional spoken cues related to mental states in human-robot social interaction. Proceedings of the acm international conference on multimodal interaction (pp. 347–350). Seattle, Washington.
  • Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978–988. https://doi.org/10.1016/j.compedu.2011.10.006
  • Bethel, C. L., & Murphy, R. R. (2008). Survey of non-facial/non-verbal affective expressions for appearance-constrained robots. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(1), 83–92. https://doi.org/10.1109/TSMCC.2007.905845
  • Bharatharaj, J., Huang, L., & Al-Jumaily, A. (2015). Bio-inspired therapeutic pet robots: Review and future direction. In 2015 10th international conference on information, communications and signal processing (icics) (pp. 1–5). Singapore, Singapore.
  • Birnbaum, G. E., Mizrahi, M., Hoffman, G., Reis, H. T., Finkel, E. J., & Sass, O. (2016). Machines as a source of consolation: Robot responsiveness increases human approach behavior and desire for companionship. Proceedings of the acm/ieee international conference on human robot interaction (pp. 165–171). Christchurch, New Zealand.
  • Broadbent, E., Stafford, R., & MacDonald, B. (2009). Acceptance of healthcare robots for the older population: Review and future directions. International Journal of Social Robotics, 1(4), 319. https://doi.org/10.1007/s12369-009-0030-6
  • Bruce, V. (1993). What the human face tells the human mind: Some challenges for the robot-human interface. Advanced Robotics, 8(4), 341–355. https://doi.org/10.1163/156855394X00149
  • Burger, B., Lerasle, F., & Ferrané, I. (2009). Evaluations of embedded modules dedicated to multimodal human-robot interaction. Proceedings of the ieee international symposium on robot and human interactive communication (roman) (pp. 699–704). Toyama, Japan.
  • Byrne, S., Gay, G., Pollack, J., Gonzales, A., Retelny, D., Lee, T., & Wansink, B. (2012). Caring for mobile phone-based virtual pets can influence youth eating behaviors. Journal of Children and Media, 6(1), 83–99. https://doi.org/10.1080/17482798.2011.633410
  • Cabibihan, -J.-J., Javed, H., Ang, M., & Aljunied, S. (2013). Why robots? a survey on the roles and benefits of social robots in the therapy of children with autism. International Journal of Social Robotics, 5(4), 593–618. https://doi.org/10.1007/s12369-013-0202-2
  • Carpinella, C. M., Wyman, A. B., Perez, M. A., & Stroessner, S. J. (2017). The Robotic Social Attributes Scale (RoSAS): development and validation. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 254–262). Vienna, Austria.
  • Carroll, J., & Polo, F. (2013). Augmented reality gaming with sphero. Proceedings of acm siggraph mobile (p. 17). Anaheim, California.
  • Cha, E., Dragan, A. D., & Srinivasa, S. S. (2013). Effects of robot capability on user acceptance. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 97–98). Tokyo, Japan.
  • Charisi, V., Davison, D., Reidsma, D., & Evers, V. (2016). Evaluation methods for user- centered child-robot interaction. In 2016 25th ieee international symposium on robot and human interactive communication (roman) (pp. 545–550). New York, NY.
  • Chevalier, P., Tapus, A., Martin, J.-C., & Isableu, B. (2015). Social personalized human- machine interaction for people with autism: Defining user profiles and first contact with a robot. Proceedings of the acm/ieee international conference on human-robot interaction extended abstracts (pp. 101–102). Portland, Oregon.
  • Choi, J. J., Kim, Y., & Kwak, S. S. (2014). Are you embarrassed?: The impact of robot types on emotional engagement with a robot. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 138–139). Bielefeld, Germany.
  • Clabaugh, C., Becerra, D., Deng, E., Ragusa, G., & Matarić, M. (2018). Month-long, in- home case study of a socially assistive robot for children with autism spectrum disorder. Proceedings of the companion of the acm/ieee international conference on human-robot interaction (pp. 87–88). Chicago, IL.
  • Crumpton, J., & Bethel, C. L. (2016). A survey of using vocal prosody to convey emotion in robot speech. International Journal of Social Robotics, 8(2), 271–285. https://doi.org/10.1007/s12369-015-0329-4
  • Dahl, T., & Boulos, M. (2014). Robots in health and social care: A complementary technology to home care and telehealthcare? Robotics, 3(1), 1–21. https://doi.org/10.3390/robotics3010001
  • Darrow, S., Kimbrell, A., Lokhande, N., Dinep-Schneider, N., Ciufo, T., Odom, B., … Bethel, C. L. (2018). Therabot™: A robotic support companion. Proceedings of the companion of the acm/ieee international conference on human-robot interaction (pp. 37). Chicago, IL.
  • Dey, A., Billinghurst, M., Lindeman, R. W., & Swan, J. (2018). A systematic review of 10 years of augmented reality usability studies: 2005 to 2014. Frontiers in Robotics and AI, 5, 37. https://doi.org/10.3389/frobt.2018.00037
  • Díaz, M., Saez-Pons, J., Heerink, M., & Angulo, C. (2013). Emotional factors in robot-based assistive services for elderly at home. 2013 ieee roman (pp. 711–716). Gyeongju, South Korea.
  • Dragone, M., Holz, T., & O’Hare, G. M. (2006). Mixing robotic realities. Proceedings of the acm international conference on intelligent user interfaces (pp. 261–263). Sydney, Australia.
  • Dragone, M., Holz, T., & O’Hare, G. M. (2007). Using mixed reality agents as social interfaces for robots. Proceedings of the ieee international symposium on robot and human interactive communication (roman) (pp. 1161–1166). Jeju, South Korea.
  • Duncan, B. A., & Murphy, R. R. (2012). A preliminary model for comfortable approach distance based on environmental conditions and personal factors. 2012 international conference on collaboration technologies and systems (cts) (pp. 622–627). Denver, CO.
  • Ferreira, J. F., & Dias, J. (2014). Attentional mechanisms for socially interactive robots–a survey. IEEE Transactions on Autonomous Mental Development, 6(2), 110–125. https://doi.org/10.1109/TAMD.2014.2303072
  • Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3–4), 143–166. https://doi.org/10.1016/S0921-8890(02)00372-X
  • Goodfellow, I. J., Koenig, N., Muja, M., Pantofaru, C., Sorokin, A., & Takayama, L. (2010). Help me help you: Interfaces for personal robots. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 187–188). Osaka, Japan.
  • Heerink, M., Kröse, B., Wielinga, B., & Evers, V. (2009). Measuring the influence of social abilities on acceptance of an interface robot and a screen agent by elderly users. Proceedings of the british hci group annual conference on people and computers: Celebrating people and technology (pp. 430–439). Cambridge, UK.
  • Hirsch, L., Björsell, A., Laaksoharju, M., & Obaid, M. (2017). Investigating design implications towards a social robot as a memory trainer. Proceedings of the acm international conference on human agent interaction (pp. 5–10). Bielefeld, Germany.
  • Hoffman, G. (2012). Dumb robots, smart phones: A case study of music listening companionship. Proceedings of the ieee international symposium on robot and human interactive communication (roman) (pp. 358–363). Paris, France.
  • Hoffman, G., Bauman, S., & Vanunu, K. (2016). Robotic experience companionship in music listening and video watching. Personal and Ubiquitous Computing, 20(1), 51–63. https://doi.org/10.1007/s00779-015-0897-1
  • Honig, S. S., Oron-Gilad, T., Zaichyk, H., Sarne-Fleischmann, V., Olatunji, S., & Edan, Y. (2018). Toward socially aware person-following robots. IEEE Transactions on Cognitive and Developmental Systems, 10(4), 936–954. https://doi.org/10.1109/TCDS.2018.2825641
  • Hornfeck, K., Zhang, Y., & Lee, K. (2012). Philos: A sociable robot for human robot inter- actions and wireless health monitoring. Proceedings of the acm symposium on applied computing (pp. 293–294). Trento, Italy.
  • Hortensius, R., Hekele, F., & Cross, E. S. (2018). The perception of emotion in artificial agents. IEEE Transactions on Cognitive and Developmental Systems, 10(4), 852–864. https://doi.org/10.1109/TCDS.2018.2826921
  • Imayoshi, A., Munekata, N., & Ono, T. (2013). Robots that can feel the mood: Context-aware behaviors in accordance with the activity of communications. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 143–144). Tokyo, Japan.
  • Johnsen, K., Ahn, S. J., Moore, J., Brown, S., Robertson, T. P., Marable, A., & Basu, A. (2014). Mixed reality virtual pets to reduce childhood obesity. IEEE Transactions on Visualization and Computer Graphics, 20(4), 523–530. https://doi.org/10.1109/TVCG.2014.33
  • Jung, S., Lim, H.-T., Kwak, S., & Biocca, F. (2012). Personality and facial expressions in human-robot interaction. Proceedings of the acm/ieee international conference on human- robot interaction (hri) (pp. 161–162). Boston, MA.
  • Kachouie, R., Sedighadeli, S., Khosla, R., & Chu, M.-T. (2014). Socially assistive robots in elderly care: A mixed-method systematic literature review. International Journal of Human- Computer Interaction, 30(5), 369–393. https://doi.org/10.1080/10447318.2013.873278
  • Kahn, P. H., Jr, Kanda, T., Ishiguro, H., Gill, B. T., Shen, S., Gary, H. E., & Ruckert, J. H. (2015). Will people keep the secret of a humanoid robot?: Psychological intimacy in hri. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 173–180). Portland, Oregon.
  • Katzakis, N., & Steinicke, F. (2018). Excuse me! perception of abrupt direction changes using body cues and paths on mixed reality avatars. Proceedings of the companion of the acm/ieee international conference on human-robot interaction (pp. 147–148). Chicago, IL.
  • Kim, K., Billinghurst, M., Bruder, G., Been-Lirn Duh, H., & Welch, G. F. (2018). Revisiting trends in augmented reality research: A review of the 2nd decade of ISMAR (2008–2017). IEEE Transactions on Visualization and Computer Graphics (TVCG), 24(11), 2947–2962. https://doi.org/10.1109/TVCG.2018.2868591
  • Kim, K., Maloney, D., Bruder, G., Bailenson, J., & Welch. G. (2017b). The effects of virtual human's spatial and behavioral coherence with physical objects on social presence in AR. Computer Animation and Virtual Worlds, 28(3–4), e1771. https://doi.org/10.1002/cav.1771
  • Kim, K., Nagendran, A., Bailenson, J. N., Raij, A., Bruder, G., Lee, M., Schubert, R., Yan, X., & Welch, G. F. (2017). A large-scale study of surrogate physicality and gesturing on human–surrogate interactions in a public space. Frontiers in Robotics and AI, 4, 1–20. https://doi.org/10.3389/frobt.2017.00032
  • Korn, O., Bieber, G., & Fron, C. (2018). Perspectives on social robots: From the historic background to an experts’ view on future developments. Proceedings of the acm pervasive technologies related to assistive environments conference (pp. 186–193). Corfu, Greece.
  • Langton, S. R. (2001). How the eyes affect the i: Gaze perception, cognition and the robot- human interface. Proceedings of the ieee international workshop on robot and human interactive communication. roman 2001 (cat. no. 01th8591) (pp. 359–365). Bordeaux, Paris.
  • Lee, J. K., & Breazeal, C. (2010). Human social response toward humanoid robot’s head and facial features. Proceedings of the extended abstracts of the acm chi conference on human factors in computing systems (pp. 4237–4242). Atlanta, Georgia.
  • Lee, M., Norouzi, N., Bruder, G., Wisniewski, P. J., & Welch, G. F. (2019). Mixed reality tabletop gameplay: Social interaction with a virtual human capable of physical influence. IEEE Transactions on Visualization and Computer Graphics, 24(8), 1–12. https://doi.org/10.1109/TVCG.2019.2959575
  • Lee, M. K., Forlizzi, J., Kiesler, S., Rybski, P., Antanitis, J., & Savetsila, S. (2012). Personalization in HRI: A longitudinal field experiment. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 319–326). Boston, MA.
  • Lee, S.-Y., Kim, S., Lee, G., & Lee, J. (2018). Robots in diverse contexts: Effects of robots tasks on expected personality. Proceedings of the companion of the acm/ieee international conference on human-robot interaction (pp. 169–170). Chicago, IL.
  • Leite, I., Martinho, C., & Paiva, A. (2013). Social robots for long-term interaction: A survey. International Journal of Social Robotics, 5(2), 291–308. https://doi.org/10.1007/s12369-013-0178-y
  • Leyzberg, D., Spaulding, S., & Scassellati, B. (2014). Personalizing robot tutors to individuals’ learning differences. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 423–430). Bielefeld, Germany.
  • Li, J. (2016). Social robots as interactive technology agents: Supporting design with exploratory assessment. Proceedings of the acm/ieee international conference on human robot interaction (pp. 629–630). Christchurch, New Zealand.
  • Li, J., & Ju, W. (2016). Social robots for automated remote instruction. Proceedings of the acm/ieee international conference on human robot interaction (pp. 575). Christchurch, New Zealand.
  • Li, L.-Y., Chang, C.-W., & Chen, G.-D. (2009). Researches on using robots in education. International conference on technologies for e-learning and digital entertainment (pp. 479–482). Banff, AB.
  • Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., … Moher, D. (2009). The prisma statement for reporting systematic reviews and meta- analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine, 151(4), W–65. https://doi.org/10.7326/0003–4819-151-4-200908180-00136
  • Lucas, G. M., Gratch, J., King, A., & Morency, L.-P. (2014). It’s only a computer: Virtual humans increase willingness to disclose. Computers in Human Behavior, 37, 94–100. https://doi.org/10.1016/j.chb.2014.04.043
  • Ly, O., & Oudeyer, P.-Y. (2010). Acroban the humanoid: Playful and compliant physical child-robot interaction. Proceedings of acm siggraph emerging technologies 4). Los Angeles, California.
  • Malle, B. F., Scheutz, M., Arnold, T., Voiklis, J., & Cusimano, C. (2015). Sacrifice one for the good of many?: People apply different moral norms to human and robot agents. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 117–124). Portland, OR.
  • Mitzner, T. L., Kemp, C. C., Rogers, W., & Tiberio, L. (2013). Investigating healthcare providers’ acceptance of personal robots for assisting with daily caregiving tasks. Proceedings of the extended abstracts of the acm chi conference on human factors in computing systems (pp. 499–504). Paris, France.
  • Mou, Y., Shi, C., Shen, T., & Xu, K. (2020). A systematic review of the personality of robot: Mapping its conceptualization, operationalization, contextualization and effects. International Journal of Human–Computer Interaction, 36(6), 591–605. https://doi.org/10.1080/10447318.2019.1663008
  • Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J.-Y., & Pattacini, U. Dac-h3: A proactive robot cognitive architecture to acquire and express knowledge about the world and the self. (2018). IEEE Transactions on Cognitive and Developmental Systems, 10(4), 1005–1022. others. https://doi.org/10.1109/TCDS.2017.2754143
  • Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, -J.-J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1(209–0015), 13. https://doi.org/10.2316/Journal.209.2013.1.209-0015
  • Nalin, M., Baroni, I., Sanna, A., & Pozzi, C. (2012). Robotic companion for diabetic children: Emotional and educational support to diabetic children, through an interactive robot. Proceedings of the 11th international conference on interaction design and children (pp. 260–263).Bremen, Germany.
  • Norouzi, N., Bruder, G., Belna, B., Mutter, S., Turgut, D., & Welch, G. (2019). A systematic review of the convergence of augmented reality, intelligent virtual agents, and the internet of things. In Artificial intelligence in IoT (pp. pp. 1–37). Fadi Al-Turjman: Springer.
  • Norouzi, N., Kim, K., Hochreiter, J., Lee, M., Daher, S., Bruder, G., & Welch, G. (2018). A systematic survey of 15 years of user studies published in the intelligent virtual agents conference. Proceedings of the international conference on intelligent virtual agents (pp. 17–22). Sydney, NSW.
  • Norouzi, N., Kim, K., Lee, M., Schubert, R., Erickson, A., Bailenson, J., … Welch, G. (2019). Walking your virtual dog: Analysis of awareness and proxemics with simulated support animals in augmented reality. Proceedings of the ieee international symposium on mixed and augmented reality (pp. 253–264). Beijing, China.
  • Okamura, A. M., Mataric, M. J., & Christensen, H. I. (2010). Medical and health-care robotics. IEEE Robotics & Automation Magazine, 17(3), 26–37. https://doi.org/10.1109/MRA.2010.937861
  • Overgoor, C., & Funk, M. (2018). Idlebot: Exploring non-engaging interaction design in personal spaces. Proceedings of the extended abstracts of the acm chi conference on human factors in computing systems (pp. 1–5). Montreal, QC.
  • Paepcke, S., & Takayama, L. (2010). Judging a bot by its cover: An experiment on expectation setting for personal robots. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 45–52). Osaka, Japan.
  • Paletta, L., Fellner, M., Schüssler, S., Zuschnegg, J., Steiner, J., Lerch, A., … Prodromou, D. (2018). Amigo: Towards social robot based motivation for playful multimodal intervention in dementia. Proceedings of the acm pervasive technologies related to assistive environments conference (pp. 421–427). Corfu, Greece.
  • Pecune, F., Chen, J., Matsuyama, Y., & Cassell, J. (2018). Field trial analysis of socially aware robot assistant. Proceedings of the international conference on autonomous agents and multiagent systems (pp. 1241–1249). Stockholm, Sweden.
  • Peng, H., Zhou, C., Hu, H., Chao, F., & Li, J. (2015). Robotic dance in social robotics—a taxonomy. IEEE Transactions on Human-Machine Systems, 45(3), 281–293. https://doi.org/10.1109/THMS.2015.2393558
  • Pennisi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., & Pioggia, G. (2016). Autism and social robotics: A systematic review. Autism Research, 9(2), 165–183. https://doi.org/10.1002/aur.1527
  • Petit, M., Fischer, T., & Demiris, Y. (2016). Lifelong augmentation of multimodal streaming autobiographical memories. IEEE Transactions on Cognitive and Developmental Systems, 8(3), 201–213. https://doi.org/10.1109/TAMD.2015.2507439
  • Petrie, H., & Darzentas, J. (2017). Older people and robotic technologies in the home: Perspectives from recent research literature. Proceedings of the 10th international conference on pervasive technologies related to assistive environments (pp. 29–36). Island of Rhodes, Greece.
  • Pickard, M. D., Roster, C. A., & Chen, Y. (2016). Revealing sensitive information in personal interviews: Is self-disclosure easier with humans or avatars and under what conditions? Computers in Human Behavior, 65, 23–30. https://doi.org/10.1016/j.chb.2016.08.004
  • Ramachandran, A., & Scassellati, B. (2015). Fostering learning gains through personalized robot-child tutoring interactions. Proceedings of the acm/ieee international conference on human-robot interaction extended abstracts (pp. 193–194). Portland, Oregon.
  • Ribes, A., Cerquides, J., Demiris, Y., & de Mantaras, R. L. (2015). Where is my keyboard? model-based active adaptation of action-space in a humanoid robot. Proceedings of the ieee international conference on humanoid robots (humanoids) (pp. 602–609). Seoul, South Korea.
  • Ritschel, H. (2018). Socially-aware reinforcement learning for personalized human-robot interaction. Proceedings of the international conference on autonomous agents and multiagent systems (pp. 1775–1777). Stockholm, Sweden.
  • Ritschel, H., & André, E. (2017). Real-time robot personality adaptation based on reinforcement learning and social signals. Proceedings of the companion of the acm/ieee international conference on human-robot interaction (pp. 265–266). Vienna, Austria.
  • Robinson, H., MacDonald, B., & Broadbent, E. (2014). The role of healthcare robots for older people at home: A review. International Journal of Social Robotics, 6(4), 575–591. https://doi.org/10.1007/s12369-014-0242-2
  • Rosen, E., Whitney, D., Phillips, E., Chien, G., Tompkin, J., Konidaris, G., & Tellex, S. (2017). Communicating robot arm motion intent through mixed reality head-mounted displays. arXiv preprint arXiv:1708.03655
  • Rouanet, P., Oudeyer, P.-Y., Danieau, F., & Filliat, D. (2013). The impact of human-robot interfaces on the learning of visual objects. IEEE Transactions on Robotics, 29(2), 525–541. https://doi.org/10.1109/TRO.2012.2228134
  • Sabelli, A. M., Kanda, T., & Hagita, N. (2011). A conversational robot in an elderly care center: An ethnographic study. Proceedings of acm/ieee international conference on human-robot interaction (hri) (pp. 37–44). Lausanne, Switzerland.
  • Saga, T., Munekata, N., & Ono, T. (2014). Daily support robots that move on the body. Proceedings of the acm international conference on human-agent interaction (pp. 29–34). Tsukuba, Japan.
  • Sardar, A., Joosse, M., Weiss, A., & Evers, V. (2012). Don’t stand so close to me: Users’ attitudinal and behavioral responses to personal space invasion by robots. In proceedings of the acm/ieee international conference on human-robot interaction (pp. 229–230). Boston, Massachusetts.
  • Satake, S., Kanda, T., Glas, D. F., Imai, M., Ishiguro, H., & Hagita, N. (2009). How to approach humans? strategies for social robots to initiate interaction. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 109–116). La Jolla, California.
  • Saunderson, S., & Nejat, G. (2019). How robots influence humans: A survey of nonverbal communication in social human–robot interaction. International Journal of Social Robotics, 11(4), 1–34. https://doi.org/10.1007/s12369-019-00523-0
  • Schwarz, M., Stückler, J., & Behnke, S. (2014). Mobile teleoperation interfaces with adjustable autonomy for personal service robots. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 288–289). Bielefeld, Germany.
  • Sibirtseva, E., Kontogiorgos, D., Nykvist, O., Karaoguz, H., Leite, I., Gustafson, J., & Kragic, C. (2018). A comparison of visualisation methods for disambiguating verbal requests in human-robot interaction. arXiv preprint arXiv:1801.08760
  • Spaulding, S. (2018). Personalized robot tutors that learn from multimodal data. Proceedings of the international conference on autonomous agents and multiagent systems (pp. 1781–1783). Stockholm, Sweden.
  • Stiehl, W. D., Lee, J. K., Breazeal, C., Nalin, M., Morandi, A., & Sanna, A. (2009). The huggable: A platform for research in robotic companions for pediatric care. Proceedings of the 8th international conference on interaction design and children (pp. 317–320). Como, Italy.
  • Syriopoulou-Delli, C. K., & Gkiolnta, E. (2020). Review of assistive technology in the training of children with autism spectrum disorders. International Journal of Developmental Disabilities, 66, 1–13. https://doi.org/10.1080/20473869.2019.1706333
  • Tahir, Y., Rasheed, U., Dauwels, S., & Dauwels, J. (2014). Perception of humanoid social mediator in two-person dialogs. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 300–301).  Bielefeld, Germany.
  • Tan, X. Z., Vázquez, M., Carter, E. J., Morales, C. G., & Steinfeld, A. (2018). Inducing bystander interventions during robot abuse with social mechanisms. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 169–177). Chicago, IL.
  • Ullman, D., & Malle, B. F. (2018). What does it mean to trust a robot?: Steps toward a multidimensional measure of trust. Proceedings of the companion of the acm/ieee international conference on human-robot interaction (pp. 263–264). Chicago, IL.
  • Van Der Drift, E. J., Beun, R.-J., Looije, R., Blanson Henkemans, O. A., & Neerincx, M. A. (2014). A remote social robot to motivate and support diabetic children in keeping a diary. Proceedings of the acm/ieee international conference on human-robot interaction (pp. 463–470).  Bielefeld, Germany.
  • Vandemeulebroucke, T., de Casterlé, B. D., & Gastmans, C. (2018). How do older adults experience and perceive socially assistive robots in aged care: A systematic review of qualitative evidence. Aging & Mental Health, 22(2), 149–167. https://doi.org/10.1080/13607863.2017.1286455
  • Vandevelde, C., & Saldien, J. (2016). Demonstration of opsoro-an open platform for social robots. Proceedings of the acm/ieee international conference on human-robot interaction (hri) (pp. 555–556). Christchurch, New Zealand.
  • Wang, X., Lu, C., Masuko, S., & Tanaka, J. (2018). Interactive online shopping with personalized robot agent. Proceedings of the acm international conference on intelligent user interfaces companion (p. 12). Tokyo, Japan.
  • Welch, G. F., Bruder, G., Squire, P., & Schubert, R. (2019). Anticipating widespread augmented reality: Insights from the 2018 AR visioning workshop (Tech. Rep. No. 786).
  • Wistort, R., & Breazeal, C. (2009). Tofu: A socially expressive robot character for child interaction. Proceedings of the acm international conference on interaction design and children (pp. 292–293). Como, Italy.
  • Yilmazyildiz, S., Read, R., Belpeame, T., & Verhelst, W. (2016). Review of semantic-free utterances in social human–robot interaction. International Journal of Human-Computer Interaction, 32(1), 63–85. https://doi.org/10.1080/10447318.2015.1093856
  • Zecca, M., Endo, N., Momoki, S., Itoh, K., & Takanishi, A. (2008). Design of the humanoid robot kobian-preliminary analysis of facial and whole body emotion expression capabilities. Proceedings of the ieee-ras international conference on humanoid robots (pp. 487–492). Daejeon, South Korea.
  • Zecca, M., Mizoguchi, Y., Endo, K., Iida, F., Kawabata, Y., Endo, N., … Takanishi, A. (2009). Whole body emotion expressions for kobian humanoid robot—preliminary experiments with different emotional patterns. Proceedings of the ieee international symposium on robot and human interactive communication (roman) (pp. 381–386). Toyama, Japan.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.